Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemotherapy and the war on cancer

Abstract

The era of chemotherapy began in the 1940s with the first uses of nitrogen mustards and antifolate drugs. Cancer drug development since then has transformed from a low-budget, government-supported research effort to a high-stakes, multi-billion dollar industry. The targeted-therapy revolution has arrived, but the principles and limitations of chemotherapy discovered by the early researchers still apply. This article chronicles the history of modern chemotherapy and identifies remaining challenges for the next generation of researchers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sydney Farber working at his microscope.
Figure 2: Mentor, Joe Bertino, and student, Bruce Chabner, at Yale University in 1970 with Barbara Morrison.
Figure 3: Mechanism of action of methotrexate.
Figure 4: The 'gang of five'.
Figure 5: Number of approved new molecules for the treatment of cancer by the Food and Drug Administration.

References

  1. Papac, R. J. Origins of cancer therapy. Yale J. Biol. Med. 74, 391–398 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574–578 (1963).

    CAS  PubMed  Article  Google Scholar 

  3. Gilman, A. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 103, 409–436 (1946).

    CAS  PubMed  Article  Google Scholar 

  4. Wills, L., Clutterbuch, P. & Evans, B. D. F. A new factor in the production and cure of macrocytic anaemias and its relation to other haemopoietic principles curative in pernicious anaemia. Biochem. J. 31, 2136–2147 (1937).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F. & Wolff, J. A. Temporary remissions in acute leukemia in children produced by folic antagonist, 4-aminopteroylglutamic acid (aminopterin). N. Engl. J. Med. 238, 787–793 (1948).

    CAS  PubMed  Article  Google Scholar 

  6. Bonadonna, G. et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 294, 405–410 (1976).

    CAS  PubMed  Article  Google Scholar 

  7. Li, M. C., Hertz, R. & Bergenstal, D. M. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N. Engl. J. Med. 259, 66–74 (1958).

    CAS  PubMed  Article  Google Scholar 

  8. Jaffe, N., Frei, E. 3rd, Traggis, D. & Bishop, Y. Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma. N. Engl. J. Med. 291, 994–997 (1974).

    CAS  PubMed  Article  Google Scholar 

  9. Jaffe, N. et al. High-dose methotrexate in osteogenic sarcoma. Natl Cancer Inst. Monogr. 56, 201–206 (1981).

    Google Scholar 

  10. Osborn, M. J., Freeman, M. & Huennekens, F. M. Inhibition of dihydrofolic reductase by aminopterin and amethopterin. Proc. Soc. Exp. Biol. Med. 97, 429–431 (1958).

    CAS  PubMed  Article  Google Scholar 

  11. Osborn, M. J. & Huennekens, F. M. Enzymatic reduction of dihydrofolic acid. J. Biol. Chem. 233, 969–974 (1958).

    CAS  PubMed  Article  Google Scholar 

  12. Jolivet, J., Cowan, K. H., Curt, G. A., Clendeninn, N. J. & Chabner, B. A. The pharmacology and clinical use of methotrexate. N. Engl. J. Med. 309, 1094–104 (1983).

    CAS  PubMed  Article  Google Scholar 

  13. Messmann, R. A. & Allegra, C. J. in Cancer Chemotherapy and Biotherapy (eds Chabner, B. A. & Longo, D.) 139–184 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  14. Curt, G. A., Clendeninn, N. J. & Chabner, B. A. Drug resistance in cancer. Cancer Treat. Rep. 68, 87–99 (1984).

    CAS  PubMed  Google Scholar 

  15. Stoller, R. G., Hande, K. R., Jacobs, S. A., Rosenberg, S. A. & Chabner, B. A. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N. Engl. J. Med. 297, 630–634 (1977).

    CAS  PubMed  Article  Google Scholar 

  16. Skipper, H. E., Thomson, J. R., Elion, G. B. & Hitchings, G. H. Observations on the anticancer activity of 6-mercaptopurine. Cancer Res. 14, 294–298 (1954).

    CAS  PubMed  Google Scholar 

  17. Hitchings, G. H. & Elion, G. B. The chemistry and biochemistry of purine analogs. Ann. NY Acad. Sci. 60, 195–199 (1954).

    CAS  PubMed  Article  Google Scholar 

  18. Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. Jr. The Vinca alkaloids: a new class of oncolytic agents. Cancer Res. 23, 1390–1427 (1963).

    CAS  PubMed  Google Scholar 

  19. Bensch, K. G. & Malawista, S. E. Microtubule crystals: a new biophysical phenomenon induced by Vinca alkaloids. Nature 218, 1176–1177 (1968).

    CAS  PubMed  Article  Google Scholar 

  20. Frei, E. 3rd et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 26, 642–656 (1965).

    PubMed  Article  Google Scholar 

  21. Frei, E. 3rd. The National Cancer Chemotherapy Program. Science 217, 600–606 (1982).

    PubMed  Article  Google Scholar 

  22. Driscoll, J. S. The preclinical new drug research program of the National Cancer Institute. Cancer Treat. Rep. 68, 63–76 (1984).

    CAS  PubMed  Google Scholar 

  23. Grever, M. R., Schepartz, S. A. & Chabner, B. A. The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 19, 622–638 (1992).

    CAS  PubMed  Google Scholar 

  24. Skipper, H. E., Schabel, F. M. Jr. & Wilcox, W. S. Experimental evaluation of potential anticancer agents. Xiii. On the criteria and kinetics associated with 'curability' of experimental leukemia. Cancer Chemother. Rep. 35, 1–111 (1964).

    CAS  PubMed  Google Scholar 

  25. Skipper, H. E. & Griswold, D. P. Frank M. Schabel 1918–1983. Cancer Res. 44, 871–872 (1984).

    CAS  PubMed  Google Scholar 

  26. Moxley, J. H. 3rd, De Vita, V. T., Brace, K. & Frei, E. 3rd. Intensive combination chemotherapy and X-irradiation in Hodgkin's disease. Cancer Res. 27, 1258–1263 (1967).

    PubMed  Google Scholar 

  27. Devita, V. T. Jr., Serpick, A. A. & Carbone, P. P. Combination chemotherapy in the treatment of advanced Hodgkin's disease. Ann. Intern. Med. 73, 881–895 (1970).

    PubMed  Article  Google Scholar 

  28. Levitt, M. et al. Combination sequential chemotherapy in advanced reticulum cell sarcoma. Cancer 29, 630–636 (1972).

    CAS  PubMed  Article  Google Scholar 

  29. Berd, D., Cornog, J., DeConti, R. C., Levitt, M. & Bertino, J. R. Long-term remission in diffuse histiocytic lymphoma treated with combination sequential chemotherapy. Cancer 35, 1050–1054 (1975).

    CAS  PubMed  Article  Google Scholar 

  30. Moertel, C. G. et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N. Engl. J. Med. 322, 352–358 (1990).

    CAS  PubMed  Article  Google Scholar 

  31. McGuire, W. P. et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med. 111, 273–279 (1989).

    CAS  PubMed  Article  Google Scholar 

  32. Goodman, J. & Walsh, V. The Story of Taxol: Nature and Politics in the Pursuit of an Anti-cancer Drug (Cambridge Univ., Cambridge, 2001).

    Google Scholar 

  33. Saltz, L. B. et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 343, 905–914 (2000).

    CAS  PubMed  Article  Google Scholar 

  34. Noda, K. et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N. Engl. J. Med. 346, 85–91 (2002).

    CAS  PubMed  Article  Google Scholar 

  35. Bodurka, D. C. et al. Phase II trial of irinotecan in patients with metastatic epithelial ovarian cancer or peritoneal cancer. J. Clin. Oncol. 21, 291–297 (2003).

    PubMed  Article  CAS  Google Scholar 

  36. Von Hoff, D. D. There are no bad anticancer agents, only bad clinical trial designs — twenty-first Richard and Hinda Rosenthal Foundation Award Lecture. Clin. Cancer Res. 4, 1079–1086 (1998).

    CAS  PubMed  Google Scholar 

  37. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Rosenberg, B., Vancamp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    CAS  PubMed  Article  Google Scholar 

  39. Bosl, G. J. et al. VAB-6: an effective chemotherapy regimen for patients with germ-cell tumors. J. Clin. Oncol. 4, 1493–1499 (1986).

    CAS  PubMed  Article  Google Scholar 

  40. Evans, B. D., Raju, K. S., Calvert, A. H., Harland, S. J. & Wiltshaw, E. Phase II study of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat. Rep. 67, 997–1000 (1983).

    CAS  PubMed  Google Scholar 

  41. Montgomery, J. A. Chemistry and structure-activity studies of the nitrosoureas. Cancer Treat. Rep. 60, 651–664 (1976).

    CAS  PubMed  Google Scholar 

  42. Walker, M. D. & Hurwitz, B. S. BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea; NSC-409962) in the treatment of malignant brain tumor — a preliminary report. Cancer Chemother. Rep. 54, 263–271 (1970).

    CAS  PubMed  Google Scholar 

  43. Wilson, C. B., Boldrey, E. B. & Enot, K. J. 1,3-bis (2-chloroethyl)-1-nitrosourea (NSC-409962) in the treatment of brain tumors. Cancer Chemother. Rep. 54, 273–281 (1970).

    CAS  PubMed  Google Scholar 

  44. Rai, K. R. et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1750–1757 (2000).

    CAS  PubMed  Article  Google Scholar 

  45. Minocha, A. & Long, B. H. Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and VM26. Biochem. Biophys. Res. Commun. 122, 165–170 (1984).

    CAS  PubMed  Article  Google Scholar 

  46. Freireich, E. J., Schmidt, P. J., Schneiderman, M. A. & Frei, E. 3rd. A comparative study of the effect of transfusion of fresh and preserved whole blood on bleeding in patients with acute leukemia. N. Engl. J. Med. 260, 6–11 (1959).

    CAS  PubMed  Article  Google Scholar 

  47. Gaydos, L. A., Freireich, E. J. & Mantel, N. The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. N. Engl. J. Med. 266, 905–909 (1962).

    CAS  PubMed  Article  Google Scholar 

  48. Pizzo, P. A. Granulocytopenia and cancer therapy. Past problems, current solutions, future challenges. Cancer 54, 2649–2661 (1984).

    CAS  PubMed  Article  Google Scholar 

  49. Lieschke, G. J. & Burgess, A. W. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1). N. Engl. J. Med. 327, 28–35 (1992).

    CAS  PubMed  Article  Google Scholar 

  50. Lieschke, G. J. & Burgess, A. W. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (2). N. Engl. J. Med. 327, 99–106 (1992).

    CAS  PubMed  Article  Google Scholar 

  51. Curtis, R. E. et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N. Engl. J. Med. 326, 1745–1751 (1992).

    CAS  PubMed  Article  Google Scholar 

  52. Burstein, H. J. & Winer, E. P. Primary care for survivors of breast cancer. N. Engl. J. Med. 343, 1086–1094 (2000).

    CAS  PubMed  Article  Google Scholar 

  53. Johnson, J., Monks, A., Hollingshead, M. & Sausville, E. in Cancer Chemotherapy and Biotherapy (eds Chabner, B. A. & Longo, D.) 17–36 (Lippincott Williams & Wilkins, Philadelphia, 2001).

  54. Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E. & Neckers, L. M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA 91, 8324–8328 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Worland, P. J. et al. Alteration of the phosphorylation state of p34cdc2 kinase by the flavone L86-8275 in breast carcinoma cells. Correlation with decreased H1 kinase activity. Biochem. Pharmacol. 46, 1831–1840 (1993).

    CAS  PubMed  Article  Google Scholar 

  56. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    CAS  PubMed  Article  Google Scholar 

  57. Paull, K. D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088–1092 (1989).

    CAS  PubMed  Article  Google Scholar 

  58. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  Article  PubMed  Google Scholar 

  59. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Article  Google Scholar 

  60. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002).

    CAS  PubMed  Article  Google Scholar 

  61. Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    CAS  PubMed  Article  Google Scholar 

  62. Shah, N. P. et al. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    CAS  Article  PubMed  Google Scholar 

  63. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. Branford, S. et al. Detection of BCR–ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102, 276–283 (2003).

    CAS  PubMed  Article  Google Scholar 

  65. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149–2158 (2003).

    CAS  PubMed  Article  Google Scholar 

  66. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    CAS  PubMed  Article  Google Scholar 

  68. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Article  Google Scholar 

  71. Roberts, T. G. Jr. & Chabner, B. A. Beyond fast track for drug approvals. N. Engl. J. Med. 351, 501–505 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. Adjei, A. A. et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 1760–1766 (2003).

    CAS  PubMed  Article  Google Scholar 

  73. Sharma, S. et al. A phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann. Oncol. 13, 1067–1071 (2002).

    CAS  PubMed  Article  Google Scholar 

  74. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Article  Google Scholar 

  75. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7, 85–90 (1994).

    CAS  PubMed  Article  Google Scholar 

  76. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Article  Google Scholar 

  77. Roninson, I. B. et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl Acad. Sci. USA 83, 4538–4542 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    CAS  PubMed  Article  Google Scholar 

  79. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. Reed, J. C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).

    CAS  PubMed  Article  Google Scholar 

  81. Zubrod, C. G. The national program for cancer chemotherapy. JAMA 222, 1161–1162 (1972).

    CAS  PubMed  Article  Google Scholar 

  82. Takimoto, C. H. Anticancer drug development at the US National Cancer Institute. Cancer Chemother. Pharmacol. 52 (Suppl. 1), 29–33 (2003).

    Article  CAS  Google Scholar 

  83. Kelland, L. R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer 40, 827–836 (2004).

    CAS  PubMed  Article  Google Scholar 

  84. Boyd, M. R. in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (ed. Teicher, B.) 23 (Humana, Totowa, 1997).

    Book  Google Scholar 

  85. S. G. Cowen & Company. Pharmaceutical Therapeutic Categories Outlook: Comprehensive Study 375 (S.G. Cowen & Company, New York, 2004).

  86. Schrag, D. The price tag on progress — chemotherapy for colorectal cancer. N. Engl. J. Med. 351, 317–319 (2004).

    CAS  PubMed  Article  Google Scholar 

  87. Ernst & Young LLP, Annual Biotechnology Industry Report, 2001. In Parexel's Pharmaceutical R&D Statistical Sourcebook (Parexel, Walthan, 2002/2003).

  88. Pharmaceuticals Research and Manufacturers of America. New medicines in development for cancer: 395 new medicines in development offer hope in the war on cancer 1–56 (PhRMA, Washington, 2003).

  89. IMS LifeCycle, R&D focus. In Parexel's Pharmaceutical R&D Statisitcal Sourcebook (Parexel, Walthan, 2003/2004).

  90. Chabner, B. The traveling oncologist and the wages of sin. Oncologist 6, 1–2 (2001).

    Article  Google Scholar 

  91. Gorlick, R. et al. Intrinsic and acquired resistance to methotrexate in acute leukemia. New Engl. J. Med. 335, 1041–1048 (1996).

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Chabner.

Ethics declarations

Competing interests

Bruce Chabner is a board member of Kosan Biosciences (Hayward, California) and Oncotech (Tustin, California). He is also on the Scientific Advisory Board of Cell Genesys (South San Francisco, California) and Adherex Technologies Inc. (Research Triangle Park, North Carolina), and a consultant for PharmaMar (Cambridge, Massachussets).

Related links

Related links

DATABASES

Entrez Gene

ABL

BCR

EGFR

HRAS

KIT

KRAS

PDGFRβ

VHL

National Cancer Institute

acute lymphoblastic leukaemia

acute myeloid leukaemia

bladder cancer

breast cancer

chronic myeloid leukaemia

colon cancer

head and neck cancer

Hodgkin's lymphoma

non-Hodgkin's lymphoma

non-small-cell lung cancer

ovarian cancer

testicular cancer

FURTHER INFORMATION

Developmental Therapeutics Program NCI/NIH

FDA's Oncology Tools web site (including approval statistics)

NCI's Cancer Therapy Evaluate Program

NCI's Closing in on Cancer web site

The American Cancer Society History of Cancer web site

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chabner, B., Roberts, T. Chemotherapy and the war on cancer. Nat Rev Cancer 5, 65–72 (2005). https://doi.org/10.1038/nrc1529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing