Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiation oncology: a century of achievements


Over the twentieth century the discipline of radiation oncology has developed from an experimental application of X-rays to a highly sophisticated treatment of cancer. Experts from many disciplines — chiefly clinicians, physicists and biologists — have contributed to these advances. Whereas the emphasis in the past was on refining techniques to ensure the accurate delivery of radiation, the future of radiation oncology lies in exploiting the genetics or the microenvironment of the tumour to turn cancer from an acute disease to a chronic disease that can be treated effectively with radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Wilhelm Conrad Röntgen (1845–1923).
Figure 2: The first illustration of the effect of the duration of Röntgen therapy (now called X-rays) on normal tissues.
Figure 3: Graph to show the therapeutic index with respect to cumulative dose.
Figure 4: Imaging and treatment planning


  1. 1

    Grubbé, E. H. Priority in the therapeutic use of X-rays. Radiol. 21, 156–162 (1933).

    Google Scholar 

  2. 2

    Glasser, O. Wilhelm Conrad Röntgen and the Early History of Roentgen Rays (Julius Springer, Berlin, 1931).

    Google Scholar 

  3. 3

    Coolidge, W. D. A powerful roentgen ray tube with a pure electron discharge. Phy. Rev. 2, 409–430 (1913).

    Google Scholar 

  4. 4

    Coliez, R. Les bases physiques de l'irradiation du cancer du col utérin par la curiethérapie et de la radiothérapie combinées. J. Radiol. 7, 201–216 (1923).

    Google Scholar 

  5. 5

    Failla, G. An objective method for the administration of X-rays. Acta Radiol. 4, 85–128 (1925).

    Google Scholar 

  6. 6

    Thoraeus, R. A study of the ionization method for measuring the intensity and absorption of roentgen rays and of the efficiency of different filters used in therapy. Acta Radiol. Suppl. XV (1932).

  7. 7

    Danlos, M. & Bloch, P. Note sur le traitement du lups érythémateux par des applications de radium. Ann. Dermatol. 2, 986 (1901).

    Google Scholar 

  8. 8

    Lysholm, E. Apparatus for the production of a narrow beam of rays in treatment by radium at a distance. Acta Radiol. 2, 516–519 (1923).

    Google Scholar 

  9. 9

    Stentstrom, W. Methods of improving the external application of radium for deep therapy. Am. J. Röntgenol. 11, 176–186 (1924).

    Google Scholar 

  10. 10

    Failla, G. Design of well-protected radium 'pack'. Am. J. Röntgenol. 20, 128–141 (1928).

    Google Scholar 

  11. 11

    Berven, E. The development and organization of therapeutic radiology in Sweden. Radiology 79, 829–841 (1962).

    Google Scholar 

  12. 12

    Paterson, R. & Parker, H. M. A dosage system for γ-ray therapy. Br. J. Radiol. 7, 592–632 (1934).

    Google Scholar 

  13. 13

    Abbe, R. Technical note. Arch Röntgenol. 15, 74 (1910).

    Google Scholar 

  14. 14

    Heyman, J. The Radiumhemmet method of treatmnent and results in cancer of the corpus of the uterus. J. Obstetr. 43, 655 (1936).

    Google Scholar 

  15. 15

    Dubois, J. B. & Ash, D. in Radiation Oncology: A Century of Progress and Achievement: 1895-1995 (ed. Bernier, J.) 79–98 (ESTRO Publication, Brussels, 1995).

    Google Scholar 

  16. 16

    Cleaves, M. A., Radium: with a preliminary note on radium rays in the treatment of cancer. Med. Record. 64, 601–606 (1903).

    Google Scholar 

  17. 17

    Heineke, H. Ueber die Einwirkung der Röntgenstrahlen auf Tiere. Mènch. Med. Wochenschr. 50, 2090–2092 (1903).

    Google Scholar 

  18. 18

    Regaud, C. & Ferroux, R. Discordance des effects de rayons X, d'une part dans le testicile, par le peau, d'autre parts dans le fractionment de la dose. Compt. Rend. Soc. Biol. 97, 431–434 (1927).

    Google Scholar 

  19. 19

    Coutard, H. Principles of X-ray therapy of malignant disease. Lancet 2, 1–12 (1934).

    Google Scholar 

  20. 20

    Baclesse, F. Comparative study of results obtained with conventional radiotherapy (200 KV) and cobalt therapy in the treatment of cancer of the larynx. Clin. Radiol. 18, 292–300 (1967).

    CAS  PubMed  Google Scholar 

  21. 21

    Ellis, F. The relationship of biological effect to dose-time fractionation factors in radiotherapy. Curr. Top. Radiat. Res. 4, 357–397 (1965).

    Google Scholar 

  22. 22

    Bergonié J. & Tribondeau L. L'interprétation de quelques résultats de la radiothérapie et essai de fixation d'une technique rationnelle. C. R. Séances Acad. Sci. 143, 983–985 (1906).

    Google Scholar 

  23. 23

    Petry, E. Zur Kenntnis der Bedingungen der biologischen Wirkung der Rontgenstrahlen. Biochem. Zeitschr. 135, 353 (1923).

    CAS  Google Scholar 

  24. 24

    Mottram, J. C. Factor of importance in radiosensitivity of tumours. Brit. J. Radiol. 9, 606–614 (1936).

    Google Scholar 

  25. 25

    Gray, L. H. et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Thomlinson, R. H. & Gray L. H. Br. J. Cancer 9, 539–549 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Trump, J. G. et al. High energy electrons for treatment of extensive superficial malignant lesions. Am. J. Roentgenol. Radium Ther. Nucl. Med. 69, 623–629 (1953).

    CAS  PubMed  Google Scholar 

  28. 28

    Fry, D. W., Harvie, R. B., Mullet L. B. & Walkinshaw, W. Travelling wave linear accelerator for electrons. Nature 160, 351 (1947).

    CAS  PubMed  Google Scholar 

  29. 29

    Fry, D. W. et al. A traveling wave linear accelerator for 4 MeV electrons. Nature 162, 859 (1948).

    CAS  PubMed  Google Scholar 

  30. 30

    Zuppinger, A. & Poretti, G. Symposium on High Energy Electrons (Springer-Verlag, Berlin, 1965).

    Google Scholar 

  31. 31

    Green, D. T. & Errington R. F. Design of a cobalt 60 beam therapy unit. Brit. J. Radiol. 25, 319–323 (1952).

    Google Scholar 

  32. 32

    Johns, H. E., Epp, E. R., Cormack, D. V. & Fedoruk, S. O. 1000 Curie cobalt units for radiation therapy. II. Depth dose data and diaphragm design for the Saskatchewan 1000 curie cobalt unit. Br. J. Radiol. 25, 302–308 (1952).

    CAS  PubMed  Google Scholar 

  33. 33

    Spiers, F. W. & Morrison, M. T. A cobalt 60 unit with a source-skin distance of 20 cm. Br. J. Radiol. 28, 2–7 (1955).

    CAS  PubMed  Google Scholar 

  34. 34

    Lidén, K. A 10-curie Co-60 telegamma unit. Acta Radiol. 38, 139 (1952).

    PubMed  Google Scholar 

  35. 35

    Lederman, M. & Greatorex, C. A. A Cobalt 60 telecurie unit. Brit. J. Radiol. 26, 525–532 (1953).

    CAS  PubMed  Google Scholar 

  36. 36

    Pierquin, B., Chassagne, D. & Gasiorowski, M. Présentation technique et dosimétrique de curiepuncture par fils d'or-198. J. Radiol. Electrol. Med. Nucl. 40, 690–693 (1959).

    CAS  PubMed  Google Scholar 

  37. 37

    Pierquin, B. & Dutreix, A. For a new methodology in curietherapy: the system of Paris (endo- and plesioradiotherapy with non-radioactive preparation). A preliminary note. Ann. Radiol. 9, 757–760 (1966).

    CAS  PubMed  Google Scholar 

  38. 38

    Puck, T. T. & Marcus P. I. Action of X-rays on mammalian cells. J. Exp. Med. 103, 653–666 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Withers, H. R. The dose-survival relationship for irradiation of epithelial cells of mouse skin. Br. J. Radiol. 40, 187–194 (1967).

    CAS  PubMed  Google Scholar 

  40. 40

    Withers, H. R. Regeneration of intestinal mucosa after irradiation. Cancer 28, 75–81 (1971).

    CAS  PubMed  Google Scholar 

  41. 41

    Rockwell, S. C. & Kallman, R. F. Cellular radiosensitivity and tumor radiation response in the EMT6 tumor cell system. Radiat. Res. 53, 281–294 (1973).

    CAS  PubMed  Google Scholar 

  42. 42

    Powers, W. E. & Tolmach, L. J. A multicomponent X-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature 197, 710–711 (1963).

    CAS  PubMed  Google Scholar 

  43. 43

    Hewitt, H. B. & Wilson, C. W. A survival curve for mammalian leukaemia cells irradiated in vivo (implications for the treatment of mouse leukaemia by whole-body irradiation). Br. J. Cancer 13, 69–75 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Suit, H. & Wette, R. Radiation dose fractionation and tumour control probability. Radiat. Res. 29, 267–281 (1966).

    CAS  PubMed  Google Scholar 

  45. 45

    Barendsen, G. W. & Broerse, J. J. Experimental radiotherapy of a rat rhabdomyosarcoma with 15 MeV neutrons and 300 kV X-rays. I. Effects of single exposures. Eur. J. Cancer 5, 373–391 (1969).

    CAS  PubMed  Google Scholar 

  46. 46

    Elkind, M. M., Sutton-Gilbert, H., Moses, W. B., Alescio, T. & Swain R. B. Radiation response of mammalian cells in culture: V. Temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Radiat. Res. 25, 359–376 (1965).

    CAS  PubMed  Google Scholar 

  47. 47

    Withers, H. R. in Advances in Radiation Biology Vol. 5 (eds Lett, J. & Adler, H.) 241–271 (Academic Press, New York, 1975).

    Google Scholar 

  48. 48

    Ellis, F. et al. Beam direction in radiotherapy. Symposium. Br. J. Radiol. 16, 31 (1943).

    Google Scholar 

  49. 49

    Cohen, M. & Martin, S. J. Multiple field isodose charts. in Atlas of Radiation Dose Distributions. Vol. II (International Atomic Energy Agency, Vienna, 1966).

    Google Scholar 

  50. 50

    Lauterbeur, P. C. Progress in n.m.r. zeugmatography imaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289, 483–487 (1980).

    Google Scholar 

  51. 51

    Mansfield, P. & Maudsley, A. A. Medical imaging by NMR. Br. J. Radiol. 50, 188–194 (1977).

    CAS  PubMed  Google Scholar 

  52. 52

    LoSasso, T. et al. The use of a multi-leaf collimator for conformal radiotherapy of carcinomas of the prostate and nasopharynx. Int. J. Radiat. Oncol. Biol. Phys. 25, 161–170 (1993).

    CAS  PubMed  Google Scholar 

  53. 53

    Burman, C. et al. Planning, delivery, and quality assurance of Intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 39, 863–873 (1997).

    CAS  PubMed  Google Scholar 

  54. 54

    Zelefsky, M. J. et al. Long term tolerance of high dose three-dimensional conformal radiotherapy in patients with localized prostate carcinoma. Cancer 85, 2460–2468 (1999).

    CAS  PubMed  Google Scholar 

  55. 55

    Fuks, Z., Leibel, S. A. & Ling, C. C. A practical guide to intensity-modulated radiation therapy. Published in cooperation with members of the staff of Memorial Sloan-Kettering Cancer Center. (Medical Physics Publishing, Wisconsin, 2003).

    Google Scholar 

  56. 56

    Blasberg, R. G. & Gelovani, J. Molecular-genetic imaging: a nuclear medicine based perspective. Mol. Imaging 1, 160–180 (2002).

    Google Scholar 

  57. 57

    Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J. & Mullani, N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114, 89–98 (1975).

    CAS  PubMed  Google Scholar 

  58. 58

    Wuthrich, K., Shulman, R. G. & Peisach, J. High-resolution proton magnetic resonance spectra of sperm whale cyanometmyoglobin. Proc. Natl Acad. Sci. USA 60, 373–380 (1968).

    CAS  PubMed  Google Scholar 

  59. 59

    Ling, C. C. et al. Towards multi-dimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    CAS  PubMed  Google Scholar 

  60. 60

    Scheidhauer, K. et al. Qualitative [18F]FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur. J. Nucl. Med. 23, 618–623 (1996).

    CAS  PubMed  Google Scholar 

  61. 61

    Rigo, P. et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur. J. Nucl. Med. 23, 1641–1674 (1996).

    CAS  PubMed  Google Scholar 

  62. 62

    Kiffer, J. D. et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19, 167–177 (1998).

    CAS  PubMed  Google Scholar 

  63. 63

    Shields, A. F. et al. Monitoring tumor response to chemotherapy with [C-11]-thymidine and FDG PET. J. Nucl. Med. 37, 290–296 (1998).

    Google Scholar 

  64. 64

    Shields, A. F. et al. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med. 39, 1757–1762 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Rasey, J. S. et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 417–428 (1996).

    CAS  Google Scholar 

  66. 66

    Kurhanewicz, J. et al. Prostate cancer — metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200, 489–496 (1996).

    CAS  PubMed  Google Scholar 

  67. 67

    Kurhanewicz, J. et al. Three-dimensional H1 MR spectroscopic imaging of the in situ human prostate with high (0. 24–0.7-cm3) spatial resolution. Radiology 198, 795–805 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Zelefsky, M. J. et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int. J. Radiat. Oncol. Biol. Phys. 53, 1111–1116 (2002).

    PubMed  Google Scholar 

  69. 69

    Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    CAS  PubMed  Google Scholar 

  71. 71

    Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    CAS  PubMed  Google Scholar 

  72. 72

    Syllaba, K. & Henner, K. Contribution a l'independence de l'athetose double idiopathique et congenitale. Atteinte familiale, syndrome dystrophique, signe de reseau vasculaire conjonctival, integrite psychique. Rev. Neurol. 1, 541–562 (1926).

    Google Scholar 

  73. 73

    Gotoff, S. P., Amirmokri, E. & Liebner, E. J. Ataxia telangiectasia. Neoplasia, untoward response to X-irradiation, and tuberous sclerosis. Am. J. Dis. Child. 114, 617–625 (1967).

    CAS  PubMed  Google Scholar 

  74. 74

    Taylor, A. M. R. et al. Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 4, 427–429 (1975).

    Google Scholar 

  75. 75

    Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS  PubMed  Google Scholar 

  76. 76

    Overgaard, J. & Horsman M. R. Modification of hypoxia induced radioresistance in tumors by the use of oxygen and sensitizers. Semin. Radiat. Oncol. 6, 10–21 (1996).

    CAS  PubMed  Google Scholar 

  77. 77

    Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism for reoxygenation. Br. J. Radiol. 52, 650–656 (1979).

    CAS  PubMed  Google Scholar 

  78. 78

    Giaccia, A. J., Siim, B. G. & Johnson, R. J. HIF-1 as a target for drug development. Nature Rev. Drug Discovery 2, 803–811 (2003).

    CAS  Google Scholar 

  79. 79

    Folkman, J. in Harrison's Textbook of Internal Medicine 15th edn (eds Braunwald, E. et al.) 517–530 (McGraw-Hill, New York, 2001).

    Google Scholar 

  80. 80

    Garcia-Barros, M. et al. Tumour response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Thames, H. D., Wither, H. R., Peters L. J. & Fletcher, G. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int. J. Radiat. Oncol. Biol. Phys. 8, 219–226 (1982).

    PubMed  Google Scholar 

  82. 82

    Horiot, J. C. et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC cooperative group of radiotherapy. Radiother. Oncol. 25, 231–241 (1992).

    CAS  PubMed  Google Scholar 

  83. 83

    Fletcher, G. H. in International Advances in Surgical Oncology Vol. 2 (ed. Murphy, G. P.) 55–98 (Alan R. Liss, New York, 1979).

    Google Scholar 

  84. 84

    Leksell, L. Cerebral radiosurgery. I. γ-thalanotomy in two cases of intractable pain. Acta Chir. Scand. 134, 585–595 (1968).

    CAS  PubMed  Google Scholar 

  85. 85

    Larsson, B., Lidén, K. & Sarby, B. Irradiation of small structures through intact skull. Acta Radiol. Ther. 13, 512–534 (1974).

    CAS  Google Scholar 

  86. 86

    Pignon, J. P., Bourhis, J., Domenge, C. & Designe, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-analysis of chemotherapy on head and neck cancer. Lancet 355, 949–955 (2000).

    CAS  PubMed  Google Scholar 

  87. 87

    Freund, L. Grundriss der gesamten Radiotherapie für praktische Årzte. (Urban und Schwarzenberg, Berlin, 1903).

    Google Scholar 

  88. 88

    Coutard, H. Roentgen Therapy of epitheliomas of the tonsillar region, hypopharynx, and larynx from 1920 to 1926. Am. J. Radiol. 3, 313–331 (1932).

    Google Scholar 

  89. 89

    Lagrutta, J., Reggiani, G., Grassi, G. & Raimondi, J. Radiosensitivity and oxygen therapy in gynecologic oncology. Minerva Radiol. 10, 294–295 (1965).

    CAS  PubMed  Google Scholar 

  90. 90

    Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Stratford, I. J. et al. RSU 1069, a nitroimidazole containing an aziridine group. Bioreduction greatly increases cytotoxicity under hypoxic conditions. Biochem. Pharmacol. 35, 105–109 (1986).

    CAS  PubMed  Google Scholar 

  92. 92

    Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jacques Bernier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


breast cancer

cervical cancer

endometrial cancer

head and neck cancer

Entrez Gene



American Society for Therapeutic Radiology and Oncology

European Society for Therapeutic Radiology and Oncology

Japanese Society for Therapeutic Radiology and Oncology

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernier, J., Hall, E. & Giaccia, A. Radiation oncology: a century of achievements. Nat Rev Cancer 4, 737–747 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing