Key Points
-
The architecture of cell nuclei is often altered in cancer cells. Specific tumour types are associated with characteristic alterations, and these provide an important diagnostic feature.
-
The nuclear matrix participates in the spatial organization of the genome and other nuclear components. The protein composition of the nuclear matrix is altered in tumour cells and these changes might be useful tumour markers.
-
Characteristic changes of nuclear shape and of chromatin texture can be induced in normal cells in vitro by oncogene activation. In vitro models will help to unravel the mechanisms by which oncogenes induce these tumour-specific nuclear changes and how these changes affect gene regulation.
-
Chromosome territories and gene loci display characteristic spatial arrangements in cell nuclei, and these have an important role in the generation of diagnostically significant translocations associated with human malignancies.
-
Structural alterations in tumour cells also include changes in nucleoli and the appearance of the perinucleolar compartment. These might be useful diagnostic markers in combination with automated imaging and image analysis.
-
The promyelocytic leukaemia (PML) protein, an essential component of PML bodies, is mislocalized in leukaemic cells of patients with acute promyelocytic leukaemia, leading to the disruption of PML bodies. Treatment with anticancer drugs leads to the reassembly of PML bodies and a reversion of the malignant phenotype.
-
High-throughput nuclear-structure-based assays to screen drugs for their ability to revert malignancy-associated nuclear changes might identify new therapeutics.
Abstract
Nuclear architecture — the spatial arrangement of chromosomes and other nuclear components — provides a framework for organizing and regulating the diverse functional processes within the nucleus. There are characteristic differences in the nuclear architectures of cancer cells, compared with normal cells, and some anticancer treatments restore normal nuclear structure and function. Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Consequences of gaining an extra chromosome
Chromosome Research Open Access 25 August 2023
-
Heritable transcriptional defects from aberrations of nuclear architecture
Nature Open Access 07 June 2023
-
Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis
Cellular and Molecular Life Sciences Open Access 26 February 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Beale, L. S. Examination of sputum from a case of cancer of the pharynx and the adjacent parts. Arch. Med. Lond. 2, 44 (1860). This paper established the use of cell structure as a central tool in the diagnosis of cancer.
DeMay, R. M. The Art and Science of Cytopathology (American Society of Clinical Pathologists Press, Chicago, 1996). This standard clinical textbook and reference manual describes the changes in cell structure that occur in many different cancers and shows how these changes are used in the diagnosis of cancer by light microscopy.
Fu, Y. S., Reagan, J. W. & Bennington, J. L. Pathology of the Uterine Cervix, Vagina, and Vulva (W. B. Saunders Company, Philadelphia, 1989).
Nickerson, J. Experimental observations of a nuclear matrix. J. Cell Sci. 114, 463–474 (2001). This comprehensive review of the nuclear matrix describes the ultrastructure and composition of this structure. It also discusses the methods that are used to isolate the nuclear matrix and addresses controversies about nuclear-matrix isolation protocols.
Nickerson, J. A., Krockmalnic, G., Wan, K. M. & Penman, S. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc. Natl Acad. Sci. USA 94, 4446–4450 (1997).
Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969).
Fey, E. G., Krochmalnic, G. & Penman, S. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J. Cell Biol. 102, 1654–1665 (1986).
Mattern, K. A., Humbel, B. M., Muijsers, A. O., de Jong, L. & van Driel, R. hnRNP proteins and B23 are the major proteins of the internal nuclear matrix of HeLa S3 cells. J. Cell. Biochem. 62, 275–289 (1996).
Mancini, M. A., He, D., Ouspenski, I. I. & Brinkley, B. R. Dynamic continuity of nuclear and mitotic matrix proteins in the cell cycle. J. Cell. Biochem. 62, 158–164 (1996).
Vogelstein, B., Pardoll, D. M. & Coffey, D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell 22, 79–85 (1980).
Bode, J. et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195–197 (1992).
Benham, C., Kohwi-Shigematsu, T. & Bode, J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274, 181–196 (1997).
Yanagisawa, J., Ando, J., Nakayama, J., Kohwi, Y. & Kohwi-Shigematsu, T. A matrix attachment region (MAR)-binding activity due to a p114 kilodalton protein is found only in human breast carcinomas and not in normal and benign breast disease tissues. Cancer Res. 56, 457–462 (1996).
Cai, S., Han, H. J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genet. 34, 42–51 (2003).
Alvarez, J. D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–35 (2000).
Woynarowski, J. M. AT islands- their nature and potential for anticancer strategies. Curr. Cancer Drug Targets 4, 219–234 (2004).
Pitot, H. C. et al. Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors. Clin. Cancer Res. 8, 712–717 (2002).
Schwartz, G. H. et al. A phase I study of bizelesin, a highly potent and selective DNA-interactive agent, in patients with advanced solid malignancies. Ann. Oncol. 14, 775–782 (2003).
Fey, E. G. & Penman, S. Nuclear matrix proteins reflect cell type of origin in cultured human cells. Proc. Natl Acad. Sci. USA 85, 121–125 (1988).
Dworetzky, S. I. et al. Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation. Proc. Natl Acad. Sci. USA 87, 4605–4609 (1990).
Leman, E. S. & Getzenberg, R. H. Nuclear matrix proteins as biomarkers in prostate cancer. J. Cell. Biochem. 86, 213–223 (2002).
Coffey, D. S. Nuclear matrix proteins as proteomic markers of preneoplastic and cancer lesions: commentary re: G. Brunagel et al. nuclear matrix protein alterations associated with colon cancer metastasis to the liver. Clin Cancer Res. 8, 3031–3033 (2002).
Partin, A. W. et al. Preliminary immunohistochemical characterization of a monoclonal antibody (PRO:4-216) prepared from human prostate cancer nuclear matrix proteins. Urology 50, 800–808 (1997).
Nickerson, J. A. Nuclear dreams: the malignant alteration of nuclear architecture. J. Cell. Biochem. 70, 172–180 (1998).
Sukhai, M. A. et al. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG–NuMA–RARα. Oncogene 23, 665–678 (2004).
Van Le, T. S., Myers, J., Konety, B. R., Barder, T. & Getzenberg, R. H. Functional characterization of the bladder cancer marker, BLCA-4. Clin. Cancer Res. 10, 1384–1391 (2004).
Goldman, R. D., Gruenbaum, Y., Moir, R. D., Shumaker, D. K. & Spann, T. P. Nuclear lamins: building blocks of nuclear architecture. Genes. Dev. 16, 533–547 (2002).
Broers, J. L. et al. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 143, 211–220 (1993).
Mounkes, L., Kozlov, S., Burke, B. & Stewart, C. L. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev. 13, 223–230 (2003).
Ostlund, C. & Worman, H. J. Nuclear envelope proteins and neuromuscular diseases. Muscle Nerve 27, 393–406 (2003).
Zastrow, M. S., Vlcek, S. & Wilson, K. L. Proteins that bind A-type lamins: integrating isolated clues. J. Cell Sci. 117, 979–987 (2004).
Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997). This is a classic paper describing relationships between gene positioning and transcriptional regulation.
Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunol. 2, 825–826 (2001).
Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).
Zink, D. et al. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J. Cell Biol. (in the press).
Morris, G. E. The role of the nuclear envelope in Emery–Dreifuss muscular dystrophy. Trends Mol. Med. 7, 572–577 (2001).
Lee, K. K. et al. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 114, 4567–4573 (2001).
Jhiang, S. M. The RET proto-oncogene in human cancers. Oncogene 19, 5590–5597 (2000).
Viglietto, G. et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11, 1207–1210 (1995).
Tallini, G. et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res. 4, 287–294 (1998).
Jhiang, S. M. et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137, 375–378 (1996).
Bond, J. A., Wyllie, F. S., Rowson, J., Radulescu, A. & Wynford-Thomas, D. In vitro reconstruction of tumour initiation in a human epithelium. Oncogene 9, 281–290 (1994).
Fischer, A. H., Taysavang, P. & Jhiang, S. M. Nuclear envelope irregularity is induced by RET/PTC during interphase. Am. J. Pathol. 163, 1091–1100 (2003).
Fischer, A. H., Bond, J. A., Taysavang, P., Battles, O. E. & Wynford-Thomas, D. Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am. J. Pathol. 153, 1443–1450 (1998). Reports that expression of RET/PTC , the oncogene expressed in papillary carcinoma of the thyroid, is sufficient to induce the changes in nuclear shape and chromatin distribution that are characteristic of these cancer cells.
Fischer, A. H. et al. in Cold Spring Harbor Symposium: Dynamic Organization of Nuclear Function (Cold Spring Harbor, New York, 2000).
Kurokawa, K., Kawai, K., Hashimoto, M., Ito, Y. & Takahashi, M. Cell signalling and gene expression mediated by RET tyrosine kinase. J. Intern. Med. 253, 627–633 (2003).
Shi, N. et al. Structural basis for the specific recognition of RET by the Dok1 phosphotyrosine binding domain. J. Biol. Chem. 279, 4962–4969 (2004).
Consortium, I. H. G. S. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). The sequence of the human genome.
Ferreira, J., Paolella, G., Ramos, C. & Lamond, A. I. Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J. Cell Biol. 139, 1597–1610 (1997).
Sadoni, N. et al. Nuclear organization of mammalian genomes: polar chromosome territories build up functionally distinct higher order compartments. J. Cell Biol. 146, 1211–1226 (1999). Provides comprehensive insights into the relationships between mitotic chromosome structure and the functional organization of mammalian genomes in the nucleus.
Boyle, S. et al. The spatial organization of human chromosomes within cell nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211–219 (2001).
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999). Established the use of chromosomes 18 and 19 as a model system for studying the radial distribution of chromosome territories and showed gene-density-dependent radial positioning.
Cremer, M. et al. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res. 9, 541–567 (2001).
Dimitrova, D. & Berezney, R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051 (2002).
Cremer, M. et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J. Cell Biol. 162, 809–820 (2003).
Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).
Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003). Detailed statistical analysis of gene positioning in relation to the frequency of chromosomal translocations involving corresponding gene loci.
Parada, L. A., McQueen, P. G., Munson, P. J. & Misteli, T. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol. 12, 1692–1697 (2002).
Kozubek, S. et al. The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the inducation of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 108, 426–435 (1999).
The Non-Hodgkin's Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 89, 3909–3918 (1997).
Mühlmann, M. Molecular cytogenetics in metphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet. Mol. Res. 1, 117–127 (2002).
Frost, J. K. The Cell in Health and Disease: An Evaluation of Cellular Morphologic Expression of Biologic Behavior (Karger, New York, 1986).
Lukasova, E. et al. Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma 112, 221–230 (2004).
Fischer, A. H., Chaddee, D. N., Wright, J. A., Gansler, T. S. & Davie, J. R. Ras-associated nuclear structural change appears functionally significant and independent of the mitotic signaling pathway. J. Cell. Biochem. 70, 130–140 (1998).
Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769 (2004).
Robertson, K. D. DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139–3155 (2001).
Roberts, C. W. & Orkin, S. H. The SWI/SNF complex- chromatin and cancer. Nature Rev. Cancer 4, 133–142 (2004).
Mathon, N. F. & Lloyd, A. C. Cell senescence and cancer. Nature Rev. Cancer 1 (2001).
Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001).
te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. & Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883 (2002).
Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).
Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).
Henderson, A. S., Warburton, D. & Atwood, K. C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl Acad. Sci. USA 69, 3394–3398 (1972).
Fischer, A. H., Bardarov, S. Jr. & Jiang, Z. Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J. Cell. Biochem. 91, 170–181 (2004).
Liebhaber, S. A., Wolf, S. & Schlessinger, D. Differences in rRNA metabolism of primary and SV40-transformed human fibroblasts. Cell 13, 121–127 (1978).
Derenzini, M. et al. Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J. Pathol. 191, 181–186 (2000).
Olson, M. O. Sensing cellular stress: another new function for the nucleolus? Sci. STKE 9 Mar 2004 (doi:10.1126/stke.2242004pe10).
Pederson, T. The plurifunctional nucleolus. Nucleic Acids Res. 26, 3871–3876 (1998).
Huang, S. Perinucleolar structures. J. Struct. Biol. 129, 233–240 (2000).
Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. The dynamic organization of the perinucleolar compartment in the cell nucleus. J. Cell Biol. 137, 965–974 (1997). Describes the structure of the PNC and provides evidence that the PNC is much more prevalent in cancer cells.
Ghetti, A., Pinol-Roma, S., Michael, W. M., Morandi, C. & Dreyfuss, G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 20, 3671–3678 (1992).
Wang, C., Politz, J. C., Pederson, T. & Huang, S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell 14, 2425–2435 (2003).
Matera, A. G., Frey, M. R., Margelot, K. & Wolin, S. L. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J. Cell Biol. 129, 1181–1193 (1995).
Lee, B., Matera, A. G., Ward, D. C. & Craft, J. Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc. Natl Acad. Sci. USA 93, 11471–11476 (1996).
Zhong, S. et al. Role of SUMO-1 modified PML in nuclear body formation. Blood 95, 2748–2752 (2000).
Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumoylation in nuclear body formation, 11S roteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor α degradation. J. Exp. Med. 193, 1361–1371 (2001).
Zhong, S., Salomoni, P. & Pandolfi, P. P. The transcriptional role of PML and the nuclear body. Nature Cell Biol. 2, E85–E90 (2000).
Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemnot, P. S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Med. Genet. 63, 297–304 (1998).
Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).
Fogal, V. et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 19, 6185–6195 (2000).
Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048–9057 (2003).
Wang, Z. -G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).
Melnick, A. & Licht, J. D. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167–3215 (1999).
de Thé, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α to a novel transcribed locus. Nature 347, 558–561 (1990).
Borrow, J., Goddard, A. D., Sheer, D. & Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249, 1577–1580 (1990).
Koken, M. H. M. et al. The t(15;17) translocation alters a nuclear body in a retinoic-acid reversible fashion. EMBO J. 13, 1073–1083 (1994).
Dyck, J. A. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333–343 (1994).
Daniel, M. T. et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82, 1858–1867 (1993). First paper to show that PML bodies are lost in the leukaemic blasts of patients with APL and that they are restored after successful treatment with ATRA, an agent that re-differentiates these cells. These observations make the most convincing case for the clinical significance of the PML body in patients.
Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML–RARα in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994).
Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).
Wang, Z. Y. Ham–Wasserman Lecture: Treatment of acute leukemia by inducing differentiation and apoptosis. Hematology (Am. Soc. Hematol. Educ. Program) 1–13 (2003).
Huang, M. E., Ye, Y. C. & Wang, Z. Y. Treatment of 4 APL patients with all-trans retinoic acid. Chin. J. Intern. Med. 26, 330–322 (1987).
Lengfelder, E., Gnad, U., Büchner, T. & Hehlmann, R. Treatment of relapsed acute promyelocytic leukemia. Onkologie 26, 373–379 (2003).
Zhu, J. et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RARα) and oncogenic RARα fusion proteins. Proc. Natl Acad. Sci. USA 96, 14807–14812 (1999).
Zhu, J. Lallemand-Breitenbach, V. & de Thé, H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARα catabolism, role of oncogene degradation in disease remission. Oncogene 20, 7257–7265 (2001).
Rego, E. M., He, L. -Z., Warrell, R. P. Jr., Wang, Z. -G. & Pandolfi, P. P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML–RARα and PLZF–RARα oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000).
Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997).
Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de Thé, H. How acute promyelocytic leukaemia revived arsenic. Nature Rev. Cancer 2, 705–713 (2002). Excellent review about the use of arsenic compounds for medical treatment.
Terris, B. et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 55, 1590–1597 (1995).
Chan, J. Y., Chin, W., Liew, C. T., Chang, K. S. & Johnson, P. J. Altered expression of the growth and transformation suppressor PML gene in human hepatocellular carcinomas and in hepatitis tissues. Eur. J. Cancer 34, 1015–1022 (1998).
Gambacorta, M. et al. Heterogenous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues. Am. J. Pathol. 149, 2023–2035 (1996).
Koken, M. H. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10, 1315–1324 (1995).
Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl Cancer Inst. 96, 269–279 (2004).
Zhang, P. et al. Lack of expression for the suppressor PML in human small cell lung carcinoma. Int. J. Cancer 85, 599–605 (2000).
Masood, A. K. et al. Quantitative alterations in nuclear structure predict prostate carcinoma distant metastasis and death in men with biochemical recurrence after radical prostatectomy. Am. Cancer Soc. 2583–2591 (2003).
Millot, C. & Dufer, J. Clinical applications of image cytometry to human tumour analysis. Histol. Histopathol. 15, 1185–1200 (2000).
Pienta, K. J. & Coffey, D. S. Correlation of nuclear morphometry with progression of breast cancer. Cancer 68, 2012–2016 (1991).
Abulafia, O. & Sherer, D. M. Automated cervical cytology: meta-analyses of the performance of the PAPNET system. Obstet. Gynecol. Surv. 54, 253–264 (1999).
Mango, L. J. The FDA review process: obtaining premarket approval for the PAPNET Testing System. Acta Cytol. 40, 138–140 (1996).
Gozzetti, A. & Le Beau, M. M. Fluorescence in situ hybridization: uses and limitations. Semin. Hematol. 37, 320–333 (2000).
Remstein, E. D. et al. Diagnostic utility of fluorescent in situ hybridization in mantle-cell lymphoma. Br. J. Haematol. 110, 856–862 (2000).
Siebert, R. & Weber-Matthiesen, K. Fluorescence in situ hybridization as a diagnostic tool in malignant lymphomas. Histochem. Cell Biol. 108, 381–402 (1997).
Martin-Subero, J. I., Gesk, S., Harder, L., Grote, W. & Siebert, R. Interphase cytogenetics of hematological neoplasms under the perspective of the novel WHO classification. Anticancer Res. 23, 1139–1148 (2003).
Weber-Matthiesen, K., Winkemann, M., Muller-Hermeling, A., Schlegelberger, B. & Grote, W. Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to the characterization of tumour cells. J. Histochem. Cytochem. 40, 171–175 (1992).
Martinez-Ramirez, A. et al. Simultaneous detection of the immunophenotypic markers and genetic aberrations on routinely processed paraffin sections of lymphoma samples by means of the FICTION technique. Leukemia 18, 348–353 (2004).
Martin-Subero, J. I. et al. Multicolor-FICTION: Expanding the possibilities of combined morphologic, immunophenotypic, and genetic single cell analyses. Am. J. Pathol. 161, 413–420 (2002).
Keesee, S. K., Briggman, J. V., Thill, G. & Wu, Y. J. Utilization of nuclear matrix proteins for cancer diagnosis. Crit. Rev. Eukaryot. Gene Expr. 6, 189–214 (1996).
Soloway, M. S. et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J. Urol. 156, 363–367 (1996).
Huang, S., Rhee, E., Patel, H., Park, E. & Kaswick, J. Urinary NMP22 and renal cell carcinoma. Urology 55, 227–230 (2000).
Taimen, P., Viljamaa, M. & Kallajoki, M. Preferential expression of NuMA in the nuclei of proliferating cells. Exp. Cell Res. 256, 140–149 (2000).
Atsu, N. et al. False-positive results of the NMP22 test due to hematuria. J. Urol. 167, 555–558 (2002).
Liebel, U. et al. A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Lett. 554, 394–398 (2003).
Kozubek, M. et al. High-resolution cytometry of FISH dots in interphase cell nuclei. Cytometry 36, 279–293 (1999).
Kozubek, M. et al. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Cytometry 45, 1–12 (2001).
Boland, M. V. & Murphy, R. F. Automated analysis of patterns in fluorescence-microscope images. Trends Cell Biol. 9, 201–202 (1999).
Boland, M. V. & Murphy, R. F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17, 1213–1223 (2001).
Roques, E. J. S. & Murphy, R. F. Objective evaluation of differences in protein subcellular distribution. Traffic 3, 61–65 (2002).
Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).
Lelievre, S. A. et al. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc. Natl Acad. Sci. USA 95, 14711–14716 (1998).
Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).
Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).
Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).
Shariat, S. F. et al. Risk stratification for bladder tumor recurrence, stage and grade by urinary nuclear matrix protein 22 and cytology. Eur. Urol. 45, 304–313 (2004).
Partin, A. W. et al. Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer. Cancer Res. 53, 744–746 (1993).
Subong, E. N. et al. Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4-216) recognizes nucleophosmin/B23. Prostate 39, 298–304 (1999).
Keesee, S. K. et al. Preclinical feasibility study of NMP179, a nuclear matrix protein marker for cervical dysplasia. Acta Cytol. 43, 1015–1022 (1999).
Acknowledgements
We are grateful to S. Huang (Northwestern University Medical School, Illinois, USA), H. de Thé (Hopital St. Louis, Paris, France), and G. S. Stein (University of Massachusetts Medical School, USA) for their help and for valuable comments on the manuscript. We thank J. Koch for support in preparing the figures. D. Z. acknowledges the VolkswagenStiftung and J. N. acknowledges the American Cancer Society and National Cancer Institute for support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Cancer.gov
Entrez Gene
barrier to autointegration factor 1
lamina associated polypeptide-2β
FURTHER INFORMATION
Glossary
- FLUORESCENCE IN SITU HYBRIDIZATION
-
(FISH). A procedure for detecting specific DNA or RNA sequences in fixed cells, tissues or on mitotic chromosomes. One or more fluorescently labelled DNA probes are hybridized to their DNA or RNA targets and detected by fluorescence microscopy. In one application of FISH, chromosomal translocations can be directly visualized with probes hybridized to DNA sequences at or adjacent to potential chromosomal breakpoints.
- METAPHASE SPREAD
-
A preparation of mitotic chromosomes useful for karyotyping. The chromosomes from single cells remain together, but ideally with enough separation for each to be identified by procedures that differentially stain specific chromosome bands, or by fluorescence in situ hybridization.
Rights and permissions
About this article
Cite this article
Zink, D., Fischer, A. & Nickerson, J. Nuclear structure in cancer cells. Nat Rev Cancer 4, 677–687 (2004). https://doi.org/10.1038/nrc1430
Issue Date:
DOI: https://doi.org/10.1038/nrc1430
This article is cited by
-
Heritable transcriptional defects from aberrations of nuclear architecture
Nature (2023)
-
A guide to membraneless organelles and their various roles in gene regulation
Nature Reviews Molecular Cell Biology (2023)
-
Consequences of gaining an extra chromosome
Chromosome Research (2023)
-
Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis
Cellular and Molecular Life Sciences (2023)
-
Nuclear morphometry and chromatin texture changes in hepatocellular carcinoma samples may predict outcomes of liver transplanted patients
BMC Gastroenterology (2022)