Exploiting tumour hypoxia in cancer treatment

Key Points

  • A characteristic feature of solid tumours is the presence of cells at very low oxygen tensions. These hypoxic cells confer radiotherapy and chemotherapy resistance to the tumours, as well as selecting for a more malignant phenotype.

  • These hypoxic cells, however, provide a tumour-specific targeting strategy for therapy, and four approaches are being investigated: prodrugs activated by hypoxia; hypoxia-selective gene therapy; targeting the hypoxia-inducible factor 1 (HIF-1) transcription factor; and the use of recombinant obligate anaerobic bacteria.

  • Tirapazamine is the prototype hypoxia-activated prodrug. Its toxic metabolite, a highly reactive radical that is present at higher concentrations under hypoxia, selectively kills the resistant hypoxic cells in tumours. This makes the tumours much more sensitive to treatment with conventional chemotherapy and radiotherapy.

  • Several other hypoxia-activated prodrugs, including AQ4N, NLCQ-1 and dinitrobenzamide mustards, are in preclinical or early clinical development.

  • Hypoxia-activated gene therapy using hypoxia-specific promoters provides selective transcription of enzymes that can convert prodrugs into toxic drugs. The efficacy of this approach has been shown in animal models, but clinical testing must await better systemic delivery of vectors to hypoxic cells.

  • Targeting HIF-1 is a third strategy. This protein is stabilized under hypoxic conditions and promotes the survival of tumour cells under hypoxic conditions. Several strategies to inactivate or to exploit this unique protein in tumours are being investigated at the preclinical level.

  • Finally, using recombinant non-pathogenic clostridia — an obligate anaerobe that colonizes tumour necrosis after systemic administration — is another strategy to exploit the unique physiology of solid tumours. This approach has demonstrated considerable preclinical efficacy.


Solid tumours contain regions at very low oxygen concentrations (hypoxia), often surrounding areas of necrosis. The cells in these hypoxic regions are resistant to both radiotherapy and chemotherapy. However, the existence of hypoxia and necrosis also provides an opportunity for tumour-selective therapy, including prodrugs activated by hypoxia, hypoxia-specific gene therapy, targeting the hypoxia-inducible factor 1 transcription factor, and recombinant anaerobic bacteria. These strategies could turn what is now an impediment into a significant advantage for cancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The vascular network of normal tissue versus tumour tissue.
Figure 2: The usual mechanism by which prodrugs act as hypoxia-selective cytotoxins.
Figure 3: The mechanism by which tirapazamine selectively kills hypoxic cells.
Figure 4: Mechanisms of activation under hypoxia of prodrugs.
Figure 5: Rationale for hypoxia-dependent gene therapy.
Figure 6: Clostridial-dependent enzyme prodrug therapy—simulation of how it might work.


  1. 1

    Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953). References 1 and 2 are classic papers describing both the general nature of the oxygen effect in reducing radiation sensitivity (reference 2) and the fact that the hypoxic cells almost certainly are present in human tumours (reference 1).

    CAS  PubMed  Google Scholar 

  3. 3

    Brown, J. M. Clinical trials of radiosensitizers: what should we expect? Int. J. Radiat. Oncol. Biol. Phys. 10, 425–429 (1984).

    CAS  PubMed  Google Scholar 

  4. 4

    Overgaard, J. Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol. Res. 6, 509–518 (1994).

    CAS  PubMed  Google Scholar 

  5. 5

    Vaupel, P., Schlenger, K., Knoop, C. & Hockel, M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51, 3316–3322 (1991).

    CAS  Google Scholar 

  6. 6

    Nordsmark, M., Overgaard, M. & Overgaard, J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother. Oncol. 41, 31–40 (1996).

    CAS  PubMed  Google Scholar 

  7. 7

    Brizel, D. M., Dodge, R. K., Clough, R. W. & Dewhirst, M. W. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother. Oncol. 53, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Tannock, I. F. Conventional cancer therapy: promise broken or promise delayed? Lancet 351 (Suppl. 2), 9–16 (1998).

    Google Scholar 

  9. 9

    Durand, R. E. The influence of microenvironmental factors during cancer therapy. In vivo 8, 691–702 (1994).

    CAS  PubMed  Google Scholar 

  10. 10

    Tannock, I. F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Teicher, B. A., Lazo, J. S. & Sartorelli, A. C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 41, 73–81 (1981).

    CAS  PubMed  Google Scholar 

  12. 12

    Batchelder, R. M., Wilson, W. R., Hay, M. P. & Denny, W. A. Oxygen dependence of the cytotoxicity of the enediyne anti-tumour antibiotic esperamicin A1. Br. J. Cancer Suppl. 27, S52–S56 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Comerford, K. M. et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62, 3387–3394 (2002).

    CAS  PubMed  Google Scholar 

  14. 14

    Wartenberg, M. et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 17, 503–505 (2003).

    CAS  PubMed  Google Scholar 

  15. 15

    Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996). Describes how hypoxia in tumours selects against wild-type p53 by causing apoptosis in these cells.

    CAS  Google Scholar 

  16. 16

    Yuan, J. & Glazer, P. M. Mutagenesis induced by the tumor microenvironment. Mutat. Res. 400, 439–446 (1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  18. 18

    Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    PubMed  Google Scholar 

  19. 19

    Rofstad, E. K. Microenvironment-induced cancer metastasis. Int. J. Radiat. Biol. 76, 589–605 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Subarsky, P. & Hill, R. P. The hypoxic tumour microenvironment and metastatic progression. Clin. Exp. Metastasis 20, 237–250 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Hockel, M. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    CAS  PubMed  Google Scholar 

  22. 22

    Brizel, D. M. et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56, 941–943 (1996).

    CAS  PubMed  Google Scholar 

  23. 23

    Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986). The initial paper describing the hypoxic selectivity of tirapazamine for cell killing.

    CAS  PubMed  Google Scholar 

  24. 24

    Brown, J. M. & Lemmon, M. J. Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res. 50, 7745–7749 (1990).

    CAS  PubMed  Google Scholar 

  25. 25

    Brown, J. M. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 67, 1163–1170 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Daniels, J. S. & Gates, K. S. DNA cleavage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (SR4233): Evidence for involvement of hydroxyl radical. J. Am. Chem. Soc. 118, 3380–3385 (1996).

    CAS  Google Scholar 

  27. 27

    Zagorevskii, D. et al. A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates. J. Am. Soc. Mass Spectrom. 14, 881–892 (2003).

    CAS  PubMed  Google Scholar 

  28. 28

    Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A. & Denny, W. A. Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction. J. Am. Chem. Soc. 125, 748–756 (2003).

    CAS  PubMed  Google Scholar 

  29. 29

    Peters, K. B. & Brown, J. M. Tirapazamine: a hypoxia-activated topoisomerase II poison. Cancer Res. 62, 5248–5253 (2002).

    CAS  PubMed  Google Scholar 

  30. 30

    Dorie, M. J. & Brown, J. M. Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res. 53, 4633–4636 (1993). In vivo data showing that tirapazamine and cisplatin have a marked hypoxia and schedule-dependent synergism.

    CAS  PubMed  Google Scholar 

  31. 31

    Kovacs, M. S. et al. Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. Br. J Cancer 80, 1245–1251 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    von Pawel, J. et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. J. Clin. Oncol. 18, 1351–1359 (2000). Clinical data showing the efficacy of tirapazamine in combination with cisplatin in a randomized multicentre Phase III trial.

    CAS  Google Scholar 

  33. 33

    Rischin, D. et al. Preliminary results of TROG 98.02—a randomized phase II study of 5-fluorouracil, cisplatin and radiation versus tirapazamine, cisplatin and radiation for advanced squamous cell carcinoma of the head and neck. Proc. Am. Soc. Clin. Oncol. 22, A1992 (2003).

    Google Scholar 

  34. 34

    Patterson, L. H. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev. 12, 119–134 (1993).

    CAS  PubMed  Google Scholar 

  35. 35

    Patterson, L. H. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab. Rev. 34, 581–592 (2002).

    CAS  PubMed  Google Scholar 

  36. 36

    Patterson, L. H. & Murray, G. I. Tumour cytochrome P450 and drug activation. Curr. Pharm. Des. 8, 1335–1347 (2002).

    CAS  PubMed  Google Scholar 

  37. 37

    Patterson, L. H. & McKeown, S. R. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br. J. Cancer 83, 1589–1593 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Patterson, L. H. et al. Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. Br. J. Cancer 82, 1984–1990 (2000). Demonstration of potentiation of radiation and chemotherapy by the bioreductive agent AQ4N.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Adams, G. E. & Stratford, I. J. Bioreductive drugs for cancer therapy: the search for tumor specificity. Int. J. Radiat. Oncol. Biol. Phys. 29, 231–238 (1994).

    CAS  PubMed  Google Scholar 

  40. 40

    Brown, J. M. & Siim, B. G. Hypoxia-specific cytotoxins in cancer therapy. Semin. Rad. Onc. 6, 22–36 (1996).

    CAS  Google Scholar 

  41. 41

    de Groot, F. M., Damen, E. W. & Scheeren, H. W. Anticancer prodrugs for application in monotherapy: targeting hypoxia, tumor-associated enzymes, and receptors. Curr. Med. Chem. 8, 1093–1122 (2001).

    CAS  Google Scholar 

  42. 42

    Denny, W. A. & Wilson, W. R. Bioreducible mustards: a paradigm for hypoxia-selective prodrugs of diffusible cytotoxins (HPDCs). Cancer Metastasis Rev. 12, 135–151 (1993).

    CAS  PubMed  Google Scholar 

  43. 43

    Naylor, M. A. & Thomson, P. Recent advances in bioreductive drug targeting. Mini Rev. Med. Chem. 1, 17–29 (2001).

    CAS  PubMed  Google Scholar 

  44. 44

    Rauth, A. M., Melo, T. & Misra, V. Bioreductive therapies: an overview of drugs and their mechanisms of action. Int. J. Radiat. Oncol. Biol. Phys. 42, 755–762 (1998).

    CAS  PubMed  Google Scholar 

  45. 45

    Rockwell, S. Use of hypoxia-directed drugs in the therapy of solid tumors. Semin. Oncol. 19, 29–40 (1992).

    CAS  PubMed  Google Scholar 

  46. 46

    Workman, P. & Stratford, I. J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 12, 73–82 (1993).

    CAS  PubMed  Google Scholar 

  47. 47

    Papadopoulou, M. V. & Bloomer, W. D. NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. Clin. Cancer Res. 9, 5714–5720 (2003).

    CAS  PubMed  Google Scholar 

  48. 48

    Hicks, K. O., Pruijn, F. B., Baguley, B. C. & Wilson, W. R. Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. J. Pharmacol. Exp. Ther. 297, 1088–1098 (2001).

    CAS  PubMed  Google Scholar 

  49. 49

    Delahoussaye, Y. M., Hay, M. P., Pruijn, F. B., Denny, W. A. & Brown, J. M. Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting. Biochem. Pharmacol. 65, 1807–1815 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Hay, M. P. et al. DNA-targeted 1,2,4-benzotriazine 1,4-dioxides as hypoxia–selective analogues of tirapazamine. J. Med. Chem. 47, 475–488 (2004).

    CAS  PubMed  Google Scholar 

  51. 51

    Denny, W. A., Wilson, W. R. & Hay, M. P. Recent developments in the design of bioreductive drugs. Br. J. Cancer Suppl. 27, S32–S38 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Koch, C. J. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res. 53, 3992–3997 (1993).

    CAS  PubMed  Google Scholar 

  53. 53

    Hicks, K. O., Siim, B. G., Pruijn, F. B. & Wilson, W. R. Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: Implications for exptravascular transport and activity in tumors. Radiat. Res. (in the press).

  54. 54

    Marshall, R. S. & Rauth, A. M. Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells. Cancer Res. 48, 5655–5659 (1988).

    CAS  PubMed  Google Scholar 

  55. 55

    Siim, B. G., Atwell, G. J. & Wilson, W. R. Oxygen dependence of the cytotoxicity and metabolic activation of 4-alkylamino-5-nitroquinoline bioreductive drugs. Br. J. Cancer 70, 596–603 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wilson, W. R., Moselen, J. W., Cliffe, S., Denny, W. A. & Ware, D. C. Exploiting tumor hypoxia through bioreductive release of diffusible cytotoxins: the cobalt(III)-nitrogen mustard complex SN 24771. Int. J. Radiat. Oncol. Biol. Phys. 29, 323–327 (1994).

    CAS  PubMed  Google Scholar 

  57. 57

    Wouters, B. G. & Brown, J. M. Cells at intermediate oxygen levels can be more important than the 'hypoxic fraction' in determining tumor response to fractionated radiotherapy. Radiat. Res. 147, 541–550 (1997).

    CAS  Google Scholar 

  58. 58

    Lee, A. E. & Wilson, W. R. Hypoxia-dependent retinal toxicity of bioreductive anticancer prodrugs in mice. Toxicol. Appl. Pharmacol. 163, 50–59 (2000).

    CAS  PubMed  Google Scholar 

  59. 59

    Allalunis, M. J., Chapman, J. D. & Turner, A. R. Identification of a hypoxic population of bone marrow cells. Int. J. Radiat. Oncol. Biol. Phys. 9, 227–232 (1983).

    CAS  PubMed  Google Scholar 

  60. 60

    Cipolleschi, M. G., Dello Sbarba, P. & Olivotto, M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82, 2031–2037 (1993).

    CAS  PubMed  Google Scholar 

  61. 61

    Siim, B. G., Denny, W. A. & Wilson, W. R. Nitro reduction as an electronic switch for bioreductive drug activation. Oncol. Res. 9, 357–369 (1997).

    CAS  PubMed  Google Scholar 

  62. 62

    Helsby, N. A. et al. Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation. Chem. Res. Toxicol. 16, 469–478 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Wilson, W. R. et al. Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res. 62, 1425–1432 (2002). Demonstrates the use of three-dimensional cell cultures to show bystander effects from GDEPT.

    CAS  PubMed  Google Scholar 

  64. 64

    Borch, R. F. et al. Synthesis and evaluation of nitroheterocyclic phosphoramidates as hypoxia-selective alkylating agents. J. Med. Chem. 43, 2258–2265 (2000).

    CAS  PubMed  Google Scholar 

  65. 65

    Tercel, M. et al. Hypoxia-selective antitumor agents. 16. Nitroarylmethyl quaternary salts as bioreductive prodrugs of the alkylating agent mechlorethamine. J. Med. Chem. 44, 3511–3522 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Wilson, W. R., Moselen, J. W., Cliffe, S., Denny, W. A. & Ware, D. C. Exploiting tumor hypoxia through bioreductive release of diffusible cytotoxins: the cobalt(III)-nitrogen mustard complex SN 24771. Int. J. Radiat. Oncol. Biol. Phys. 29, 323–327 (1994).

    CAS  PubMed  Google Scholar 

  67. 67

    Everett, S. A. et al. Modifying rates of reductive elimination of leaving groups from indolequinone prodrugs: a key factor in controlling hypoxia-selective drug release. Biochem. Pharmacol. 63, 1629–1639 (2002).

    CAS  PubMed  Google Scholar 

  68. 68

    Wilson, W. R., Tercel, M., Anderson, R. F. & Denny, W. A. Radiation-activated prodrugs as hypoxia-selective cytotoxins: model studies with nitroarylmethyl quaternary salts. Anticancer Drug Des. 13, 663–685 (1998).

    CAS  PubMed  Google Scholar 

  69. 69

    Kriste, A. G., Tercel, M., Anderson, R. F., Ferry, D. M. & Wilson, W. R. Pathways of reductive fragmentation of heterocyclic nitroarylmethyl quaternary ammonium prodrugs of mechlorethamine. Radiat. Res. 158, 753–762 (2002).

    CAS  PubMed  Google Scholar 

  70. 70

    Ahn, G., Ware, D. C., Denny, W. A. & Wilson, W. R. Optimization of the auxiliary ligand shell of cobalt(III)(8-hydroxyquinoline) complexes as model hypoxia-selective radiation–activated prodrugs. Radiat. Res. (in the press).

  71. 71

    Shibamoto, Y., Zhou, L., Hatta, H., Mori, M. & Nishimoto, S. A novel class of antitumor prodrug, 1-(2′-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation. Jpn J. Cancer Res. 91, 433–438 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Zhong, H. et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Talks, K. L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Shibata, T., Akiyama, N., Noda, M., Sasai, K. & Hiraoka, M. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int. J. Radiat. Oncol. Biol. Phys. 42, 913–916 (1998).

    CAS  PubMed  Google Scholar 

  75. 75

    Greco, O. & Dachs, G. U. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J. Cell Physiol. 187, 22–36 (2001).

    CAS  PubMed  Google Scholar 

  76. 76

    Binley, K. et al. Hypoxia-mediated tumour targeting. Gene Ther. 10, 540–549 (2003).

    CAS  PubMed  Google Scholar 

  77. 77

    Shibata, T., Giaccia, A. J. & Brown, J. M. Hypoxia-inducible regulation of a prodrug-activating enzyme for tumor-specific gene therapy. Neoplasia 4, 40–48 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Patterson, A. V. et al. Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther. 9, 946–954 (2002).

    CAS  PubMed  Google Scholar 

  79. 79

    Trinh, Q. T., Austin, E. A., Murray, D. M., Knick, V. C. & Huber, B. E. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5- fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res. 55, 4808–4812 (1995).

    CAS  PubMed  Google Scholar 

  80. 80

    McCarthy, H. O. et al. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther. 10, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  81. 81

    Griffiths, L. et al. The macrophage: a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 7, 255–262 (2000).

    CAS  Google Scholar 

  82. 82

    Burke, B. et al. Expression of HIF-1α by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J. Pathol. 196, 204–212 (2002).

    CAS  PubMed  Google Scholar 

  83. 83

    Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  84. 84

    Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nature Rev. Drug Discov. 2, 803–811 (2003).

    CAS  Google Scholar 

  85. 85

    Semenza, G. L. Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med. 41, 79–83 (2002).

    CAS  Google Scholar 

  86. 86

    Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G. & Livingston, D. M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature Med. 6, 1335–1340 (2000).

    CAS  Google Scholar 

  87. 87

    Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Sun, X. et al. Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther. 8, 638–645 (2001).

    CAS  Google Scholar 

  89. 89

    Mabjeesh, N. J. et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 62, 2478–2482 (2002).

    CAS  Google Scholar 

  90. 90

    Mabjeesh, N. J. et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3, 363–375 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Yeo, E. J. et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl Cancer Inst. 95, 516–525 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Lemmon, M. J. et al. Anaerobic bacteria as a gene delivery system to tumors. Proc. Am. Assoc. Cancer Res. 35, 374 (1994).

    Google Scholar 

  93. 93

    Fox, M. E. et al. Anaerobic bacteria as a delivery system for cancer gene therapy: activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  94. 94

    Lemmon, M. L. et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4, 791–796 (1997).

    CAS  Google Scholar 

  95. 95

    Malmgren, R. A. & Flanigan, C. C. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 15, 473–478 (1955).

    CAS  PubMed  Google Scholar 

  96. 96

    Möse, J. R. & Möse, G. Onkolyseversuche mit apathogenen anaeroben Sporenbildern am Ehrlich Tumor des Maus. Z. Krebsforsch 63, 63–74 (1959).

    Google Scholar 

  97. 97

    Möse, J. R. & Möse, G. Oncolysis by clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res. 24, 212–216 (1964).

    Google Scholar 

  98. 98

    Thiele, E. H., Arison, R. N. & Boxer, G. E. Oncolysis by clostridia. III. Effects of clostridia and chemotherapeutic agents on rodent tumors. Cancer Res. 24 (1964).

  99. 99

    Engelbart, K. & Gericke, D. Oncolysis by clostridia V. Transplanted tumors of the hamster. Cancer Res. 24, 239–243 (1964).

    CAS  PubMed  Google Scholar 

  100. 100

    Carey, R. W., Holland, J. F., Whang, H. Y., Neter, E. & Bryant, B. Clostridial oncolysis in man. Europ. J. Cancer 3, 37–46 (1967).

    Google Scholar 

  101. 101

    Heppner, F. & Mose, J. R. The liquefaction (oncolysis) of malignant gliomas by a non pathogenic clostridium. Acta Neuro. 12, 123–125 (1978).

    Google Scholar 

  102. 102

    Heppner, F., Mose, J., Ascher, P. W. & Walter, G. Oncolysis of malignant gliomas of the brain. 13th Int. Cong. Chemother. 226, 38–45 (1983).

    Google Scholar 

  103. 103

    Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).

    CAS  Google Scholar 

  104. 104

    Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Liu, S. C., Minton, N. P., Giaccia, A. J. & Brown, J. M. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9, 291–296 (2002). First data demonstrating in vivo efficacy of CDEPT.

    CAS  PubMed  Google Scholar 

  106. 106

    Bridgewater, J. A. et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur. J. Cancer 31A, 2362–2370 (1995).

    CAS  PubMed  Google Scholar 

  107. 107

    Minton, N. P. Clostridia in cancer therapy. Nat. Rev. Microbiol. 1, 237–242 (2003).

    CAS  PubMed  Google Scholar 

  108. 108

    Martin, J. et al. Antibody-directed enzyme prodrug therapy: pharmacokinetics and plasma levels of prodrug and drug in a phase I clinical trial. Cancer Chemother. Pharmacol. 40, 189–201 (1997).

    CAS  PubMed  Google Scholar 

  109. 109

    Joseph, W. R. et al. Stimulation of tumors to synthesize tumor necrosis factor-α in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res. 59, 633–638 (1999).

    CAS  PubMed  Google Scholar 

  110. 110

    Zhao, L., Ching, L. M., Kestell, P. & Baguley, B. C. The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice. Br. J. Cancer 87, 465–470 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Ching, L. M. et al. Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. Br. J. Cancer 86, 1937–1942 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Galbraith, S. M. et al. Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J. Clin. Oncol. 20, 3826–3840 (2002).

    CAS  PubMed  Google Scholar 

  113. 113

    Theys, J. et al. Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol. Med. Microbiol. 30, 37–41 (2001).

    CAS  PubMed  Google Scholar 

  114. 114

    Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).

    CAS  PubMed  Google Scholar 

  115. 115

    Hicks, K. O., Pruijn, F. B., Sturman, J. R., Denny, W. A. & Wilson, W. R. Multicellular resistance to tirapazamine is due to restricted extravascular transport in HT29 multicellular layer cultures: A pharmacokinetic/pharmacodynamic study. Cancer Res. 63, 5970–5977 (2003).

    CAS  PubMed  Google Scholar 

  116. 116

    Helsby, N. A., Ferry, D. M., Patterson, A. V., Pullen, S. M. & Wilson, W. R. 2–amino metabolites are key mediatiors of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br. J.Cancer 90, 1084–1092 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Bussink, J., Kaanders, J. H. A. M. & van der Kogel, A. J. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exdogenous and endogenous hypoxic cell markers. Radiother. Oncol. 67, 3–15 (2003).

    PubMed  Google Scholar 

  118. 118

    Cobb, L. M. et al. 2,4-Dinitro-5-ethyleneiminobenzamide (CB 1954): A potent and selective inhibitor of the growth of the Walker carcinoma 256. Biochem. Pharmacol. 18, 1519–1527 (1969).

    CAS  PubMed  Google Scholar 

  119. 119

    Knox, R. J., Friedlos, F., Jarman, M. & Roberts, J. J. A new cytotoxic, DNA interstrand crosslinking agent, 5-(Aziridin-1-YL)-4-hydroxylamino-2-nitrobenzamide, is formed from 5-(Aziridin-1-YL)-2,4-dinitrobenzamide (CB 1954) by a nitroreductase enzyme in Walker carcinoma cells. Biochem. Pharm. 37, 4661–4669 (1988).

    CAS  PubMed  Google Scholar 

  120. 120

    Knox, R. J. et al. The nitroreductase enzyme in Walker cells that activates 5-(Aziridin-1-YL)-2,4-dinitrobenzamide (CB 1954) to 5-(Aziridin-1-YL)-4-hydroxylamino-2-nitrobenzamide is a form of NAD(P)H dehydrogenase (quinone) (EC 1. 6. 99. 2). Biochem. Pharmacol. 37, 4671–4677 (1988).

    CAS  PubMed  Google Scholar 

  121. 121

    Anlezark, G. M. et al. The bioactivation of 5-(Aziridin-1-YL)-2,4-dinitrobenzamide (CB 1954)-I Purification and properties of a nitroreductase enzyme from Escherichia Coli: A potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 44, 2289–2295 (1992).

    CAS  PubMed  Google Scholar 

  122. 122

    Chung-Faye, G. et al. Virus-directed, enzyme prodrug therapy with nitroimidazole reductase: a phase I and pharmacokinetic study of its prodrug, CB1954. Clin. Cancer Res. 7, 2662–2668 (2001).

    CAS  PubMed  Google Scholar 

  123. 123

    Stratford, I. J., Williamson, C., Hoe, S. & Adams, G. E. Radiosensitizing and cytotoxicity studies with CB 1954 (2,4-dinitro-5-aziridinylbenzamide). Radiat. Res. 88, 502–509 (1981).

    CAS  PubMed  Google Scholar 

  124. 124

    Palmer, B. D., Wilson, W. R., Cliffe, S. & Denny, W. A. Hypoxia-selective antitumor agents. 5. Synthesis of water-soluble nitroaniline mustards with selective cytotoxicity for hypoxic mammalian cells. J. Med. Chem. 35, 3214–3222 (1992).

    CAS  PubMed  Google Scholar 

  125. 125

    Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Wouters, B. G. et al. Mitochondrial dysfunction after aerobic exposure to the hypoxic cytotoxin tirapazamine. Cancer Res. 61, 145–152 (2001).

    CAS  PubMed  Google Scholar 

  127. 127

    Aebersold, D. M. et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61, 2911–2916 (2001). Shows that HIF-1 can be used as an endogenous marker of tumour hypoxia to predict response to radiotherapy.

    CAS  PubMed  Google Scholar 

  128. 128

    Rampling, R., Cruickshank, G., Lewis, A. D., Fitzsimmons, S. A. & Workman, P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431 (1994).

    CAS  PubMed  Google Scholar 

  129. 129

    Collingridge, D. R., Piepmeier, J. M., Rockwell, S. & Knisely, J. P. Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother. Oncol. 53, 127–131 (1999).

    CAS  PubMed  Google Scholar 

  130. 130

    Nordsmark, M., Bentzen, S. M. & Overgaard, J. Measurement of human tumour oxygenation status by a polarographic needle electrode. Acta Oncol. 33, 383–389 (1994).

    CAS  PubMed  Google Scholar 

  131. 131

    Becker, A. et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 42, 35–41 (1998).

    CAS  PubMed  Google Scholar 

  132. 132

    Le, Q. T. et al. Comparison of the comet assay and the oxygen microelectrode for measuring tumor oxygenation in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 56, 375–383 (2003).

    PubMed  Google Scholar 

  133. 133

    Vaupel, P., Briest, S. & Hockel, M. Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien. Med. Wochenschr. 152, 334–342 (2002).

    CAS  PubMed  Google Scholar 

  134. 134

    Koong, A. C. et al. Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 48, 919–922 (2000).

    CAS  PubMed  Google Scholar 

  135. 135

    Lyng, H., Sundfor, K. & Rofstad, E. K. Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia. Radiother. Oncol. 44, 163–169 (1997).

    CAS  PubMed  Google Scholar 

  136. 136

    Fyles, A. W. et al. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother. Oncol. 48, 149–156 (1998).

    CAS  PubMed  Google Scholar 

  137. 137

    Nordsmark, M. et al. Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother. Oncol. 67, 35–44 (2003).

    PubMed  Google Scholar 

  138. 138

    Movsas, B. et al. Hypoxia in human prostate carcinoma: an Eppendorf PO2 study. Am. J. Clin. Oncol. 24, 458–461 (2001).

    CAS  PubMed  Google Scholar 

  139. 139

    Brizel, D. M. et al. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res. 56, 5347–5350 (1996).

    CAS  PubMed  Google Scholar 

  140. 140

    Nordsmark, M. et al. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 35, 701–708 (1996).

    CAS  PubMed  Google Scholar 

Download references


The authors work is funded by grants from the United States National Institutes of Health (J.M.B. and W.R.W.) and the Health Research Council of New Zealand (W.R.W.).

Author information



Corresponding author

Correspondence to J. Martin Brown.

Ethics declarations

Competing interests

J. Martin Brown has a research grant from Sanofi-Synthelabo, the company that owns tirapazamine.

J. Martin Brown and William R. Wilson have equity (<5%) in a company, Proacta Therapeutics Ltd., formed to exploit hypoxia in cancer treatment.

Related links

Related links



head and neck cancer

non-small-cell lung cancer

oesophageal cancer

ovarian cancer

Entrez Gene










A low oxygen level. However, this means different levels to different investigators depending on the phenomenon being investigated. For the radiation biologist, hypoxia occurs at levels that produce severe radiation resistance or levels less than 0.1% O2 in the gas phase. Other effects of hypoxia occur at oxygen levels above and below this value.


A protein localized to the cell membrane that actively pumps many drugs out of the cell. High levels of this protein lead to resistance to many anticancer drugs.


A latent form of a drug that can be activated by metabolism or other chemical transformation in the body.


An enzyme that catalyses changes in DNA topology by transiently cleaving and re-ligating both strands of the double helix. This enzyme catalyses the passage of one DNA double-stranded molecule through another.


A chemical group that reacts with electron-rich centres in molecules.


A compound with an unpaired electron and that is usually very reactive because of this feature.


Influence of a drug on untargeted cells, in the present context by diffusion of an activated cytotoxin from hypoxic cells to surrounding cells at higher oxygen concentrations.


DNA-crosslinking alkylating agents containing a bis(X-ethyl)amine group, where X is an electrophile that can react with nucleophiles such as the N7 position of guanine.


(Gene-directed enzyme prodrug therapy). A cancer treatment strategy that aims to deliver a prodrug-activating enzyme specifically to tumour cells using gene therapy. The anticancer effect would be achieved by subsequent systemic administration of the non-toxic prodrug, which would be converted to a toxic drug preferentially in the tumour cells.


(Clostridial-dependent enzyme prodrug therapy). A cancer therapy using the non-pathogenic species of the obligate anaerobe genus clostridia that have been genetically engineered to express a prodrug-activating enzyme. This is used to activate a prodrug within the hypoxic/necrotic regions that are colononized by the bacterium.


(Antibody-directed enzyme prodrug therapy). A cancer treatment strategy that involves conjugation of a prodrug-activating enzyme (such as cytosine deaminase, which converts the non-toxic prodrug 5-fluorocytosine to the anticancer drug 5-fluorouracil) to a tumour-targeting antibody.


Drugs that damage existing blood vessels and therefore interfere with blood flow in tumours.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, J., Wilson, W. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4, 437–447 (2004). https://doi.org/10.1038/nrc1367

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing