Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracing the network connecting brca and fanconi anaemia proteins

Key Points

  • Inherited mutations that affect a single allele of either BRCA1 or BRCA2 cause a hereditary breast and ovarian cancer syndrome, which accounts for 30–60% of familial breast cancer cases.

  • Biallelic germline mutations in BRCA2 are also associated with the very rare D1 complementation group of Fanconi anaemia. The clinical features of FA-D1 patients — who develop Wilms' tumour, breast cancer and medulloblastoma — differ from typical FA cases.

  • BRCA and FA proteins work in a network of connected biological processes, and not in a linear sequence of events that constitutes a single 'pathway'. One key purpose of the network is to deal with lesions that block DNA replication — such as intra- or inter-strand DNA crosslinks — so preserving chromosome stability during the S and G2 phases of the cell cycle.

  • When sensed, replication-blocking lesions trigger cell-cycle arrest, which requires DNA-damage-activated checkpoint kinases such as ATM (which is mutated in ataxia telangiectasia) or ATR (which is mutated in Seckel syndrome), as well as BRCA1 and the FA protein FANCD2.

  • Replication-blocking lesions can be repaired — and replication resumed — through error-free processes that involve homologous recombination or error-prone, mutagenic processes that involve translesion synthesis. BRCA2 and RAD51 work directly to mediate recombination, as might FANCD2, whereas the precise functions of other FA proteins in recombination or translesion synthesis are unclear at present.

  • Each of the BRCA and FA proteins is likely to have very distinct functions within this network of biological processes. So, the clinical syndromes — including cancers — that are associated with their inactivation could be more mechanistically distinct than is supposed at present, demanding careful consideration of how emerging molecular understanding can best be translated to improve patient care.

Abstract

Recent evidence connects the proteins that are encoded by the BRCA1 and BRCA2 breast cancer susceptibility genes, and other tumour suppressors — such as the Fanconi anaemia gene products — to cell-cycle checkpoint control and DNA repair by homologous recombination. Do these connections represent a linear biological pathway or do they, instead, reflect a network of processes that prevent aberrations in chromosome structure during the S and G2 phases of the cell cycle? This distinction has important implications for current models to explain the pathogenesis of the cancer susceptibility syndromes that are associated with BRCA or Fanconi anaemia gene mutations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: BRCA deficiency and Fanconi anaemia are related chromosomal instability syndromes.
Figure 2: A model for the direct participation of BRCA2 and RAD51 in reactions leading to homologous recombination.
Figure 3: Connections between BRCA1–BARD1 and the Fanconi anaemia proteins.
Figure 4: Model for activation of the BRCA1–BARD1 heterodimer by DNA damage.
Figure 5: The BRCA-protein network in responses to DNA crosslinks or blocked DNA replication.

References

  1. Scully, R. & Livingston, D. M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–32 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    CAS  Article  PubMed  Google Scholar 

  3. Jasin, M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21, 8981–8993 (2002).

    CAS  PubMed  Google Scholar 

  4. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    CAS  Google Scholar 

  5. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathanson, K. N., Wooster, R. & Weber, B. L. Breast cancer genetics: what we know and what we need. Nature Med. 7, 552–556 (2001).

    CAS  PubMed  Google Scholar 

  8. Thompson, D. & Easton, D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet. 68, 410–419 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Thompson, D. & Easton, D. F. Cancer Incidence in BRCA1 mutation carriers. J. Natl Cancer Inst. 94, 1358–1365 (2002).

    CAS  PubMed  Google Scholar 

  10. Collins, N. et al. Consistent loss of the wild-type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene 10, 1673–1675 (1995).

    CAS  PubMed  Google Scholar 

  11. Cornelis, R. S. et al. High allele loss rates at 17q12-q21 in breast and ovarian tumors from BRCA1-linked families. The Breast Cancer Linkage Consortium. Genes Chromosom. Cancer 13, 203–210 (1995).

    CAS  PubMed  Google Scholar 

  12. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002). This paper reports the first evidence confirming a link between BRCA2 mutations and the FA-D1 complementation group.

    CAS  PubMed  Google Scholar 

  13. Auerbach, A. D. Fanconi anemia. Dermatol. Clin. 13, 41–49 (1995).

    CAS  PubMed  Google Scholar 

  14. Alter, B. P. Fanconi's anemia and malignancies. Am. J. Hematol. 53, 99–110 (1996).

    CAS  PubMed  Google Scholar 

  15. Levitus, M. et al. Heterogeneity in Fanconi anemia: evidence for two new genetic subtypes. Blood 20 Nov 2003 (doi: 10.1182/blood-2003-08-2915).

  16. de Winter, J. P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000).

    CAS  PubMed  Google Scholar 

  17. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003). A new FA gene is shown to work as a ubiquitin ligase that is necessary for modification of FANCD2.

    CAS  PubMed  Google Scholar 

  18. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Taniguchi, T. & D'Andrea, A. D. The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood 100, 2457–2462 (2002).

    CAS  PubMed  Google Scholar 

  20. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). The first characterization of the FANCD2 protein shows that it links the FA-protein nuclear complex to nuclear foci occupied by the BRCA1 protein.

    CAS  PubMed  Google Scholar 

  21. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    CAS  PubMed  Google Scholar 

  22. Patel, K. J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    CAS  PubMed  Google Scholar 

  23. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  24. Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17, 598–608 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, V. P. et al. Gross chromosomal rearrangements and genetic exchange between non-homologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of Fanconi anaemia. Nature Rev. Genet. 2, 446–457 (2001).

    CAS  PubMed  Google Scholar 

  27. West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol. 4, 435–445 (2003).

    CAS  Google Scholar 

  28. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    CAS  PubMed  Google Scholar 

  29. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001). References 28 and 29 show that BRCA1 and BRCA2 regulate the efficiency with which a chromosomal DSB is repaired by homology-directed mechanisms.

    CAS  PubMed  Google Scholar 

  30. Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol. 22, 669–679 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cressman, V. L. et al. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol. Cell. Biol. 19, 7061–7075 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, X., Aprelikova, O., Moens, P., Deng, C. X. & Furth, P. A. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130, 2001–2012 (2003).

    CAS  PubMed  Google Scholar 

  33. Sharan, S. K. et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131, 131–142 (2004).

    CAS  PubMed  Google Scholar 

  34. Yamamoto, K. et al. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol. Cell. Biol. 23, 5421–5430 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Houghtaling, S. et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev. 17, 2021–2035 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, J. C. et al. Targeted disruption of exons 1 to 6 of the fanconi anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum. Mol. Genet. 12, 2063–2076 (2003).

    CAS  PubMed  Google Scholar 

  37. Wilson, J. B. et al. The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. Carcinogenesis 22, 1939–1946 (2001).

    CAS  PubMed  Google Scholar 

  38. Takata, M. et al. Chromosomal instability and defective recombinational repair in knock-out mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941–31944 (1997).

    CAS  PubMed  Google Scholar 

  40. Chen, P. L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA 95, 5287–5292 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    CAS  PubMed  Google Scholar 

  42. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420, 287–293 (2002). Together, references 41 and 42 demonstrate the regulation of RAD51 oligomerization by the BRC repeats in BRCA2 and provide a structural basis for this phenomenon.

    CAS  PubMed  Google Scholar 

  43. Yu, D. S. et al. Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol. Cell 12, 1029–1041 (2003).

    CAS  PubMed  Google Scholar 

  44. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297, 1837–1848 (2002). The structure of a C-terminal domain of BRCA2 demonstrates novel DNA-binding properties that might underlie functions in DNA recombination.

    CAS  PubMed  Google Scholar 

  45. Shin, D. S. et al. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    CAS  Google Scholar 

  47. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of Brca1 in the DNA damage response to double-strand breaks. Science (1999).

  48. Gatei, M. et al. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem. 276, 17276–17280 (2001).

    CAS  PubMed  Google Scholar 

  49. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yarden, R. I., Pardo-Reoyo, S., Sgagias, M., Cowan, K. H. & Brody L. C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nature Genet. 30, 285–289 (2002).

    PubMed  Google Scholar 

  51. Ree, A. H., Bratland, A., Nome, R. V., Stokke, T. & Fodstad, O. Repression of mRNA for the PLK cell cycle gene after DNA damage requires BRCA1. Oncogene 22, 8952–8955 (2003).

    CAS  PubMed  Google Scholar 

  52. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    CAS  PubMed  Google Scholar 

  53. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11–p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    CAS  PubMed  Google Scholar 

  55. Zhong, Q., Chen, C. F., Chen, P. L. & Lee, W. H. BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks. J. Biol. Chem. 277, 28641–28647 (2002).

    CAS  PubMed  Google Scholar 

  56. Zhong, Q., Boyer, T. G., Chen, P. L. & Lee, W. H. Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res. 62, 3966–3970 (2002).

    CAS  PubMed  Google Scholar 

  57. Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406, 210–215 (2000).

    CAS  PubMed  Google Scholar 

  58. Zheng, L. et al. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell 6, 757–768 (2000).

    CAS  PubMed  Google Scholar 

  59. Harkin, D. P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).

    CAS  PubMed  Google Scholar 

  60. Kleiman, F. E. & Manley, J. L. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285, 1576–1579 (1999).

    CAS  PubMed  Google Scholar 

  61. Kleiman, F. E. & Manley, J. L. The BARD1–CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 104, 743–753 (2001).

    CAS  PubMed  Google Scholar 

  62. Scully, R. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA 94, 5605–5610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S. & Parvin, J. D. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genet. 19, 254–256 (1998).

    CAS  PubMed  Google Scholar 

  64. Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000).

    CAS  PubMed  Google Scholar 

  65. Cantor, S. B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).

    CAS  PubMed  Google Scholar 

  66. Ganesan, S. et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111, 393–405 (2002). An intriguing insight into a possible function for BRCA1 in X-chromosome inactivation, which sheds light on the pathogenesis of breast and ovarian cancers that are associated with BRCA1 inactivation.

    CAS  PubMed  Google Scholar 

  67. Hashizume, R. et al. The ring heterodimer brca1–bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001).

    CAS  PubMed  Google Scholar 

  68. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M. C. & Klevit, R. E. Structure of a BRCA1–BARD1 heterodimeric RING–RING complex. Nature Struct. Biol. 8, 833–837 (2001).

    CAS  PubMed  Google Scholar 

  70. Folias, A. et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum. Mol. Genet. 11, 2591–2597 (2002).

    CAS  PubMed  Google Scholar 

  71. Vandenberg, C. J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell 12, 247–254 (2003).

    CAS  PubMed  Google Scholar 

  72. Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087–1099 (2003).

    CAS  PubMed  Google Scholar 

  73. Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21, 6755–6762 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishikawa, H. et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1–BARD1 ubiquitin ligase. J. Biol. Chem. 279, 3916–3924 (2003).

    PubMed  Google Scholar 

  75. Xia, Y., Pao, G. M., Chen, H. W., Verma, I. M. & Hunter, T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 278, 5255–5263 (2003).

    CAS  PubMed  Google Scholar 

  76. Foray, N. et al. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J. 22, 2860–2871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Taniguchi, T. et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459–472 (2002).

    CAS  PubMed  Google Scholar 

  78. Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biol. 4, 913–920 (2002).

    CAS  PubMed  Google Scholar 

  79. Pichierri, P. & Rosselli, F. The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO J. 23, 1178–1187 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Centurion, S. A., Kuo, H. R. & Lambert, W. C. Damage-resistant DNA synthesis in Fanconi anemia cells treated with a DNA cross-linking agent. Exp. Cell Res. 260, 216–221 (2000).

    CAS  PubMed  Google Scholar 

  81. Sala-Trepat, M. et al. Arrest of S-phase progression is impaired in Fanconi anemia cells. Exp. Cell Res. 260, 208–215 (2000).

    CAS  PubMed  Google Scholar 

  82. Akkari, Y. M., Bateman, R. L., Reifsteck, C. A., Olson, S. B. & Grompe, M. DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol. Cell. Biol. 20, 8283–8289 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    CAS  PubMed  Google Scholar 

  84. McGlynn, P. & Lloyd, R. G. Recombinational repair and restart of damaged replication forks. Nature Rev. Mol. Cell Biol. 3, 859–870 (2002).

    CAS  Google Scholar 

  85. Broomfield, S., Hryciw, T. & Xiao, W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486, 167–184 (2001).

    CAS  PubMed  Google Scholar 

  86. Lehmann, A. R. Replication of damaged DNA. Cell Cycle 2, 300–302 (2003).

    CAS  PubMed  Google Scholar 

  87. Hochegger, H., Sonoda, E. & Takeda, S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases. Bioessays 26, 151–158 (2004).

    CAS  PubMed  Google Scholar 

  88. Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002).

    CAS  PubMed  Google Scholar 

  89. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  90. Tutt, A. N., van Oostrom, C. T., Ross, G. M., van Steeg, H. & Ashworth, A. Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation. EMBO Rep. 3, 255–260 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Laquerbe, A., Sala-Trepat, M., Vives, C., Escarceller, M. & Papadopoulo, D. Molecular spectra of HPRT deletion mutations in circulating T-lymphocytes in Fanconi anemia patients. Mutat. Res. 431, 341–350 (1999).

    CAS  PubMed  Google Scholar 

  92. Telleman, P., Overkamp, W. J. & Zdzienicka, M. Z. Spectrum of spontaneously occurring mutations in the HPRT gene of the Chinese hamster V79 cell mutant V-H4, which is homologous to Fanconi anemia group A. Mutagenesis 11, 155–159 (1996).

    CAS  PubMed  Google Scholar 

  93. Papadopoulo, D., Guillouf, C., Mohrenweiser, H. & Moustacchi, E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl Acad. Sci. USA 87, 8383–8387 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Papadopoulo, D., Porfirio, B. & Moustacchi, E. Mutagenic response of Fanconi's anemia cells from a defined complementation group after treatment with photoactivated bifunctional psoralens. Cancer Res. 50, 3289–3294 (1990).

    CAS  PubMed  Google Scholar 

  95. Simpson, L. J. & Sale, J. E. Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J. 22, 1654–1664 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sonoda, E. et al. Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J. 22, 3188–3197 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Offit, K. et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J. Natl Cancer Inst. 95, 1548–1551 (2003). This work defines the unique clinical features of a syndrome that is associated with biallelic germline mutations in BRCA2 , indicating that they cause an FA-like disease that differs in some respects from typical FA.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to authors whose papers have not been cited owing to space constraints. I am grateful to K.J. Patel (Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge) for his generous help in formulating ideas concerning connections between the FA proteins and the BRCA network. I owe similar thanks to L. Pellegrini, T. Lo and T. Blundell (Department of Biochemistry, University of Cambridge) and members of my laboratory including D. Yu, M. Lomonosov and M. Sangrithi, for helpful discussions that have helped to refine several points in this paper. Work in my laboratory is supported by the MRC and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute myeloid leukaemias

breast cancer

ovarian cancer

pancreatic cancer

prostate cancer

LocusLink

ATM

ATR

BARD1

BRCA1

BRCA2

CHK1

CHK2

DSS1

FANCA

FANCB

FANCC

FANCD2

FANCE

FANCF

FANCG

FANCL

H2AX

HPRT

HUS1

MRE11

MSH2

MSH6

p53

RAD50

RAD51

RAD6

RAD9

REV1

REV3

REV7

Glossary

FANCONI ANAEMIA

A very rare disorder that is characterized by developmental abnormalities in the skeleton, skin pigmentation and other organs, progressive failure of the bone marrow to replenish platelets and red and white blood cells, and susceptibility to acute myeloid leukaemia and squamous-cell carcinomas.

CELL-CYCLE CHECKPOINTS

Regulatory mechanisms that do not allow the initiation of a new phase of the cell cycle before the previous one has been completed, or that temporarily arrest cell-cycle progression in response to stress. DNA damage activates specific checkpoints at the G1–S and G2–M boundaries, and in S phase, with each one based on a different mechanism.

SISTER-CHROMATID EXCHANGE

A genetic exchange that occurs between the sister chromatids of mitotic chromosomes. It can be observed after labelling during replication with the pyrimidine analogue bromodeoxyuridine.

SYNAPTONEMAL COMPLEX

A structure that holds paired chromosomes together during prophase 1 of meiosis and that promotes genetic recombination.

BRC REPEATS

These recur eight times in human BRCA2 and its mammalian homologues, and at varying frequency in proteins from lower eukaryotes, even though some of these simpler proteins bear little overall similarity to mammalian BRCA2 molecules. The high level of evolutionary conservation indicates an important function for these RAD51-binding peptide motifs.

BLM

The gene that encodes this protein (a DNA helicase) is mutated in Bloom syndrome. Individuals with this syndrome have short stature, sun sensitivity, immunodeficiency, decreased fertility and a predisposition to various cancers.

NON-HOMOLOGOUS END-JOINING

This is an error-prone pathway that quickly seals DNA double-strand breaks at the expense of creating microdeletions. It is the predominant repair mode in mammalian cells and uses the KU70–KU80 heterodimer, which recruits the DNA-PK catalytic subunit. XRCC4–ligase IV finally seals the break.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venkitaraman, A. Tracing the network connecting brca and fanconi anaemia proteins. Nat Rev Cancer 4, 266–276 (2004). https://doi.org/10.1038/nrc1321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1321

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing