Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A census of human cancer genes

Key Points

  • We have conducted a census from the literature of genes that are mutated and causally implicated in cancer development ('cancer genes').

  • So far, 291 cancer genes have been reported, more than 1% of all the genes in the human genome.

  • 90% of cancer genes show somatic mutations in cancer, 20% show germline mutations and 10% show both.

  • The most common mutation class among the known cancer genes is a chromosomal translocation that creates a chimeric gene or apposes a gene to the regulatory elements of another gene.

  • Many more cancer genes have been found in leukaemias, lymphomas and sarcomas than in other types of cancer, despite the fact that they represent only 10% of human cancer. These genes are usually altered by chromosomal translocation.

  • The most common domain that is encoded by cancer genes is the protein kinase. Several domains that are involved in DNA binding and transcriptional regulation are common in proteins that are encoded by cancer genes.

Abstract

A central aim of cancer research has been to identify the mutated genes that are causally implicated in oncogenesis ('cancer genes'). After two decades of searching, how many have been identified and how do they compare to the complete gene set that has been revealed by the human genome sequence? We have conducted a 'census' of cancer genes that indicates that mutations in more than 1% of genes contribute to human cancer. The census illustrates striking features in the types of sequence alteration, cancer classes in which oncogenic mutations have been identified and protein domains that are encoded by cancer genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation types in human cancer.
Figure 2: Proportion of translocated genes in human cancer.
Figure 3: Dominant and recessive mutations in human cancer.
Figure 4: Proportion of genes associated with different tumour types.

Similar content being viewed by others

References

  1. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Tabin, C. J. et al. Mechanism of activation of a human oncogene. Nature 300, 143–149 (1982). References 1 and 2 are seminal papers that defined the existence of oncogene sequences in cancer-cell genomes and that first identified a mutation involved in human cancer.

    Article  CAS  PubMed  Google Scholar 

  3. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Merlo, A. et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  8. Baylin, S. & Bestor, T. H. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1, 299–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Duval, A. & Hamelin, R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res. 62, 2447–2454 (2002).

    CAS  PubMed  Google Scholar 

  10. Duval, A. et al. Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal cancers. Hum. Mol. Genet. 10, 513–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Grady, W. M. et al. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res. 59, 320–324 (1999).

    CAS  PubMed  Google Scholar 

  12. Ohta, M. et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84, 587–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Bednarek, A. K. et al. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140–2145 (2000).

    CAS  PubMed  Google Scholar 

  14. Sutherland, G. R., Baker, E. & Richards, R. I. Fragile sites still breaking. Trends Genet. 14, 501–506 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1946 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genet. 17, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Meijers-Heijboer, H. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genet. 31, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl Acad. Sci. USA 76, 5714–5718 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krontiris, T. G. & Cooper, G. M. Transforming activity of human tumor DNAs. Proc. Natl Acad. Sci. USA 78, 1181–1184 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baker, S. J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50, 7717–7722 (1990).

    CAS  PubMed  Google Scholar 

  22. Hwang, S. -J., Lozano, G., Amos, C. I. & Strong, L. C. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am. J. Hum. Genet. 72, 975–983 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391, 184–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002).

    CAS  PubMed  Google Scholar 

  25. Futreal, P. A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Lancaster, J. M. et al. BRCA2 mutations in primary breast and ovarian cancers. Nature Genet. 13, 238–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Nikiforov, Y. E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 13, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kroll, T. G. et al. PAX8–PPARγ1 fusion in oncogene human thyroid carcinoma. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sidhar, S. K. et al. The t(X;1)(p11. 2;q21. 2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum. Molec. Genet. 5, 1333–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Tognon, C. et al. Expression of the ETV6NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Eng, C. & Mulligan, L. M. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Hum. Mutat. 9, 97–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Wong, A. J. et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89, 2965–2969 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhuang, Z. et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nature Genet. 20, 66–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bongarzone, I. et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RIα of cyclic AMP-dependent protein kinase A. Molec. Cell. Biol. 13, 358–366 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nature Genet. 26, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nature Genet. 28, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gilliland, D. G. & Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Stratton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colorectal cancer

lung cancer

LocusLink

APC

ATM

BMPR1A

BRCA1

BRCA2

CBP

CDK4

CDKN2A

CHK2

EGFR

EP300

ETV6

FHIT

FLT3

HRAS

KIT

MET

MLH1

MLL

NTRK3

NTRK1

PAX8

PDGFRA

PRCC

PPARγ

PRKAR1A

PTEN

RET

RUNXBP2

STK11

TFE3

TGF-β

TGF-βRII

TP53

WWOX

OMIM

Carney complex

Peutz–Jegher syndrome

FURTHER INFORMATION

Cancer Genome Project

Ensembl Human Genome Browser web site

Pfam home page

Wellcome Trust Sanger Institute web site

Glossary

CpG ISLANDS

GC-rich areas of the genome, usually of the order of a kilobase in size, often in and around the 5′ regions of genes, which retain an unusually high number of CpG dinucleotides.

PASSENGER OR BYSTANDER MUTATIONS

Somatic mutations that are found in cancer cells that are not involved in generating the neoplastic phenotype.

MYXOMA

A rare type of tumour that is usually composed of sparse mesenchymal cells interspersed amid large amounts of intercellular material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futreal, P., Coin, L., Marshall, M. et al. A census of human cancer genes. Nat Rev Cancer 4, 177–183 (2004). https://doi.org/10.1038/nrc1299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing