Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mucins in cancer: protection and control of the cell surface

Key Points

  • The outermost area of a typical aerodigestive epithelial surface consists of secreted gel-forming mucins, and serves as a point of interface with air, food, enzymes, acid pH, salt, bacteria and viruses. The secreted mucin layer might also contact the cell surface through interactions with membrane-associated mucins or other cell-surface molecules.

  • Complex mucin gels have been shown to capture and hold biologically active molecules that might function as indicators of molecular or physical breach of the mucin layer and, following their release, might incite inflammatory, repair or healing processes.

  • Cell-surface-associated mucins are bound to cells by an integral transmembrane domain and have relatively short cytoplasmic tails that associate with cytoskeletal elements, cytosolic adaptor proteins and/or participate in signal transduction. Mucins might serve as cell-surface receptors and sensors, and conduct signals in response to external stimuli that lead to coordinated cellular responses that include proliferation, differentiation, apoptosis or secretion of specialized cellular products.

  • Cancer cells, especially adenocarcinomas, express aberrant forms or amounts of mucins. The expression of distinct oligosaccharide structures, together with differential glycosylation of mucin core proteins, confers on tumour cells an enormous range of potential ligands for interaction with other receptors at the cell surface.

  • Cancer cells might use mucins in much the same way as normal epithelia — for protection from adverse growth conditions and to control the local molecular microenvironment during invasion and metastasis.

  • Mucins are hypothesized to contribute to tumour invasion by simultaneously disrupting existing interactions between opposing cells (anti-adhesion) and establishing new ligands for interaction between the invading cell and the adjoining cells (adhesion).

  • Mucins could contribute to the regulation of differentiation and proliferation of tumour cells, through ligand–receptor interactions (for example, between MUC4 and ERBB2 (also known as HER2/neu) and morphogenetic signal transduction.

  • Two of the most widely used serum diagnostic assays for adenocarcinomas (CA19-9 and CA125) recognize epitopes that are found on mucins. Several immunologically based clinical-therapy trials target mucins that are expressed by adenocarcinomas, including monoclonal-antibody-based therapies and tumour vaccines.

Abstract

Mucins — large extracellular proteins that are heavily glycosylated with complex oligosaccharides — establish a selective molecular barrier at the epithelial surface and engage in morphogenetic signal transduction. Alterations in mucin expression or glycosylation accompany the development of cancer and influence cellular growth, differentiation, transformation, adhesion, invasion and immune surveillance. Mucins are used as diagnostic markers in cancer, and are under investigation as therapeutic targets for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mucins control the molecular environment of aerodigestive epithelial-cell surfaces.
Figure 2: Membrane-associated mucins as receptors or sensors of the environment.
Figure 3: Signal transduction by membrane-associated mucins.
Figure 4: Tumours use mucins for invasion, metastasis and protection.
Figure 5: Anti-adhesion by membrane-associated mucins in cancer.
Figure 6: Adhesion by membrane-associated mucins in cancer.
Figure 7: Anti-immune and anti-inflammatory effects of mucins in cancer.

Similar content being viewed by others

References

  1. Forstner, J. F. Intestinal mucins in health and disease. Digestion 17, 234–263 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Gustafsson, B. E. The physiological importance of the colonic microflora. Scand. J. Gastroenterol. Suppl. 77, 117–131 (1982).

    CAS  PubMed  Google Scholar 

  3. Lev, R. The mucin histochemistry of normal and neoplastic gastric mucosa. Lab. Invest. 14, 2080–2100 (1965).

    CAS  PubMed  Google Scholar 

  4. Hukill, P. B. & Vidone, R. A. Histochemistry of mucus and other polysaccharides in tumors. I. Carcinoma of the bladder. Lab. Invest. 14, 1624–1635 (1965).

    CAS  PubMed  Google Scholar 

  5. Goldenberg, D. M., Pegram, C. A. & Vazquez, J. J. Identification of a colon-specific antigen (CSA) in normal and neoplastic tissues. J. Immunol. 114, 1008–1013 (1975).

    CAS  PubMed  Google Scholar 

  6. Lloyd, K. O., Kabat, E. A., Layug, E. J. & Gruezo, F. Immunochemical studies on blood groups. XXXIV. Structures of some oligosaccharides produced by alkaline degradation of blood group A, B, and H substances. Biochemistry 5, 1489–1501 (1966).

    Article  CAS  PubMed  Google Scholar 

  7. Piller, F., Cartron, J. P. & Tuppy, H. Increase of blood group A and loss of blood group Sda activity in the mucus from human neoplastic colon. Rev. Fr. Transfus. Immunohematol. 23, 599–611 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Runge, R. G. & Pour, P. Blood group specificity of pancreatic tumor mucin. Cancer Lett. 10, 351–357 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Feizi, T. Blood group antigens and gastric cancer. Med. Biol. 60, 7–11 (1982).

    CAS  PubMed  Google Scholar 

  10. Bramwell, M. E., Bhavanandan, V. P., Wiseman, G. & Harris, H. Structure and function of the Ca antigen. Br. J. Cancer 48, 177–183 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burchell, J., Durbin, H. & Taylor-Papadimitriou, J. Complexity of expression of antigenic determinants, recognized by monoclonal antibodies HMFG-1 and HMFG-2, in normal and malignant human mammary epithelial cells. J. Immunol. 131, 508–513 (1983).

    CAS  PubMed  Google Scholar 

  12. Gendler, S. J. et al. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Natl Acad. Sci. USA 84, 6060–6064 (1987). The first report of a mucin cDNA demonstrated the concept of the tandem repeat, which in the case of MUC1 was an expressed variable number of tandem-repeat (VNTR) locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gendler, S. J. et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265, 15286–15293 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Magnani, J. L., Steplewski, Z., Koprowski, H. & Ginsburg, V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 43, 5489–5492 (1983). Initial report of the CA19-9 antigen.

    CAS  PubMed  Google Scholar 

  15. Metzgar, R. S. et al. Detection of a pancreatic cancer-associated antigen (DU-PAN-2 antigen) in serum and ascites of patients with adenocarcinoma. Proc. Natl Acad. Sci. USA 81, 5242–5246 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bast, R. C. Jr et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 68, 1331–1337 (1981). Initial description of the OC125 antibody and CA125 antigen.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klug, T. L., Bast, R. C. Jr, Niloff, J. M., Knapp, R. C. & Zurawski, V. R. Jr. Monoclonal antibody immunoradiometric assay for an antigenic determinant (CA 125) associated with human epithelial ovarian carcinomas. Cancer Res. 44, 1048–1053 (1984).

    CAS  PubMed  Google Scholar 

  18. Paterson, A. J., Schlom, J., Sears, H. F., Bennett, J. & Colcher, D. A radioimmunoassay for the detection of a human tumor-associated glycoprotein (TAG-72) using monoclonal antibody B72. 3. Int. J. Cancer 37, 659–666 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Gum, J. R. et al. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J. Biol. Chem. 264, 6480–6487 (1989). First-reported cloning of a human goblet-cell-secreted mucin from the intestinal tract.

    Article  CAS  PubMed  Google Scholar 

  20. Carlstedt, I., Sheehan, J. K., Corfield, A. P. & Gallagher, J. T. Mucus glycoproteins: a gel of a problem. Essays Biochem. 20, 40–76 (1985).

    CAS  PubMed  Google Scholar 

  21. Ligtenberg, M. J., Vos, H. L., Gennissen, A. M. & Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J.Biol. Chem. 265, 5573–5578 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Lan, M. S., Batra, S. K., Qi, W. N., Metzgar, R. S. & Hollingsworth, M. A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 265, 15294–15299 (1990). References 13, 21 and 22 reported cloning of the same cDNA, which came to be called MUC1, the first known membrane-associated mucin. Cloning of the same core protein from breast and pancreatic cancer cells was surprising at the time, given that antibodies that recognized mature forms of this protein that were produced by tumours derived from different organs (pancreas and breast) did not cross-react a fact that was later shown to be due to differential glycosylation of MUC1 by cells from different organ sites.

    Article  CAS  PubMed  Google Scholar 

  23. Williams, S. J. et al. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res. 59, 4083–4089 (1999).

    CAS  PubMed  Google Scholar 

  24. Pallesen, L. T., Berglund, L., Rasmussen, L. K., Petersen, T. E. & Rasmussen, J. T. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem. 269, 2755–2763 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Gum, J. R. Jr, Crawley, S. C., Hicks, J. W., Szymkowski, D. E. & Kim, Y. S. MUC17, a novel membrane-tethered mucin. Biochem. Biophys. Res. Commun. 291, 466–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Gum, J. R. et al. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun. 171, 407–415 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Gum, J. R. Jr et al. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267, 21375–21383 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Toribara, N. W. et al. Human gastric mucin. Identification of a unique species by expression cloning. J. Biol. Chem. 268, 5879–5885 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Gum, J. R. Jr, Hicks, J. W., Toribara, N. W., Siddiki, B. & Kim, Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J. Biol. Chem. 269, 2440–2446 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Porchet, N. et al. Human mucin genes: genomic organization and expression of MUC4, MUC5AC and MUC5. Biochem. Soc. Trans. 23, 800–805 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Bobek, L. A., Tsai, H., Biesbrock, A. R. & Levine, M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem. 268, 20563–20569 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Shankar, V. et al. Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol. 16, 232–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Yin, B. W. & Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem. 276, 27371–27375 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. O'Brien, T. J. et al. The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour Biol. 22, 348–366 (2001). References 33 and 34 represent the first reports of cloning the core protein for the CA125 antigen.

    Article  CAS  PubMed  Google Scholar 

  35. Moniaux, N. et al. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem J. 338, 325–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, S. J. et al. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276, 18327–18336 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Timpte, C. S., Eckhardt, A. E., Abernethy, J. L. & Hill, R. L. Porcine submaxillary gland apomucin contains tandemly repeated, identical sequences of 81 residues. J. Biol. Chem. 263, 1081–1088 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, R. & Jentoft, N. Subunit structure of porcine submaxillary mucin. Biochemistry 28, 6114–6121 (1989). References 37 and 38 confirmed the presence and importance of tandem repeats as basic components of mucin structure.

    Article  CAS  PubMed  Google Scholar 

  39. McDermott, K. M. et al. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int. J. Cancer 94, 783–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lan, M. S., Hollingsworth, M. A. & Metzgar, R. S. Polypeptide core of a human pancreatic tumor mucin antigen. Cancer Res. 50, 2997–3001 (1990).

    CAS  PubMed  Google Scholar 

  41. Hanisch, F. G. & Muller, S. MUC1: the polymorphic appearance of a human mucin. Glycobiology 10, 439–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Carraway, K. L., Ramsauer, V. P., Haq, B. & Carothers Carraway, C. A. Cell signaling through membrane mucins. Bioessays 25, 66–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Parry, S. et al. Identification of MUC1 proteolytic cleavage sites in vivo. Biochem. Biophys. Res. Commun. 283, 715–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Bork, P. & Patthy, L. The SEA module: a new extracellular domain associated with O-glycosylation. Protein Sci. 4, 1421–1425 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wreschner, D. H. et al. Generation of ligand-receptor alliances by 'SEA' module-mediated cleavage of membrane-associated mucin proteins. Protein Sci. 11, 698–706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thathiah, A., Blobel, C. P. & Carson, D. D. Tumor necrosis factor–α converting enzyme (TACE)/ADAM 17 mediates MUC1 shedding. J. Biol. Chem. 278, 3386–3394 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Gum, J. R. Jr et al. MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. J. Biol. Chem. 272, 26678–26686 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Carraway, K. L. et al. Multiple facets of sialomucin complex/MUC4, a membrane mucin and erbb2 ligand, in tumors and tissues (Y2K update). Front. Biosci. 5, D95–D107 (2000).

    CAS  PubMed  Google Scholar 

  49. Jepson, S. et al. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, induces specific phosphorylation of ErbB2 and enhances expression of p27(kip), but does not activate mitogen-activated kinase or protein kinaseB/Akt pathways. Oncogene 21, 7524–7532 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Agrawal, B., Krantz, M. J., Parker, J. & Longenecker, B. M. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res. 58, 4079–4081 (1998).

    CAS  PubMed  Google Scholar 

  51. Correa, I. et al. Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 108, 32–41 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, Y. et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J. Biol. Chem. 276, 35239–35242 (2001). Initial report of the interaction between MUC1 and β-catenin.

    Article  CAS  PubMed  Google Scholar 

  53. Schroeder, J. A., Thompson, M. C., Gardner, M. M. & Gendler, S. J. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J. Biol. Chem. 276, 13057–13064 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Escande, F., Aubert, J. P., Porchet, N. & Buisine, M. P. Human mucin gene MUC5AC: organization of its 5′-region and central repetitive region. Biochem. J. 358, 763–772 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Desseyn, J. L., Guyonnet-Duperat, V., Porchet, N., Aubert, J. P. & Laine, A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15. 5 gene family. J. Biol. Chem. 272, 3168–3178 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Toribara, N. W. et al. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis of the primary amino acid sequence. J. Biol. Chem. 272, 16398–16403 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Pigny, P. et al. Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics 38, 340–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Eckhardt, A. E., Timpte, C. S., DeLuca, A. W. & Hill, R. L. The complete cDNA sequence and structural polymorphism of the polypeptide chain of porcine submaxillary mucin. J. Biol. Chem. 272, 33204–33210 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Asker, N., Axelsson, M. A., Olofsson, S. O. & Hansson, G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J. Biol. Chem. 273, 18857–18863 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Godl, K. et al. The N-termini of the MUC2 mucin form trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277, 47248–47256 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Asker, N., Axelsson, M. A., Olofsson, S. O. & Hansson, G. C. Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin. Biochem. J. 335, 381–387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lidell, M. E., Johansson, M. E. & Hansson, G. C. An autocatalytic cleavage in the C–terminus of the human MUC2 mucin occurs at the low pH of the late secretory pathway. J. Biol. Chem. 278, 13944–13951 (2003). Provocative paper that describes autocatalytic protease activity in mucin core proteins and discusses the possibility of the formation of unusual covalent bonds between carbohydrate and protein moieties of mucins.

    Article  CAS  PubMed  Google Scholar 

  63. Bell, S. L., Khatri, I. A., Xu, G. & Forstner, J. F. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Eur. J. Biochem. 253, 123–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Nordman, H., Davies, J. R., Lindell, G. & Carlstedt, I. Human gastric mucins: a major population identified as MUC5. Biochem. Soc. Trans. 23, S533 (1995).

    Article  Google Scholar 

  65. Ho, S. B. et al. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology 109, 735–747 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Bhaskar, K. R. et al. Viscous fingering of HCl through gastric mucin. Nature 360, 458–461 (1992). Evidence of molecular discrimination by mucins.

    Article  CAS  PubMed  Google Scholar 

  67. Fujita, T., Ohara, S., Sugaya, T., Saigenji, K. & Hotta, K. Effects of rabbit gastrointestinal mucins and dextran on hydrochloride diffusion in vitro. Comp. Biochem. Physiol. B. 126, 353–359 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka, S., Podolsky, D. K., Engel, E., Guth, P. H. & Kaunitz, J. D. Human spasmolytic polypeptide decreases proton permeation through gastric mucus in vivo and in vitro. Am. J. Physiol. 272, G1473–G1480 (1997).

    CAS  PubMed  Google Scholar 

  69. Cao, X. et al. pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys. J. 76, 1250–1258 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tanaka, S. et al. Regional differences of H+, HCO3, and CO2 diffusion through native porcine gastroduodenal mucus. Dig. Dis. Sci. 47, 967–973 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Sommer, P., Blin, N. & Gott, P. Tracing the evolutionary origin of the TFF-domain, an ancient motif at mucus surfaces. Gene 236, 133–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Sands, B. E. & Podolsky, D. K. The trefoil peptide family. Annu. Rev. Physiol. 58, 253–273 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Hoffmann, W. & Jagla, W. Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. Int. Rev. Cytol. 213, 147–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Tomasetto, C. et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology 118, 70–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Thim, L., Madsen, F. & Poulsen, S. S. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Invest. 32, 519–527 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Hoffmann, W., Jagla, W. & Wiede, A. Molecular medicine of TFF-peptides: from gut to brain. Histol. Histopathol. 16, 319–334 (2001).

    CAS  PubMed  Google Scholar 

  77. Tran, C. P., Cook, G. A., Yeomans, N. D., Thim, L. & Giraud, A. S. Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44, 636–642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Taupin, D. et al. The trefoil gene family are coordinately expressed immediate-early genes: EGF receptor- and MAP kinase-dependent interregulation. J. Clin. Invest. 103, R31–R38 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Longman, R. J. et al. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47, 792–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lalani, E. N. et al. Trefoil factor-2, human spasmolytic polypeptide, promotes branching morphogenesis in MCF-7 cells. Lab. Invest. 79, 537–546 (1999).

    CAS  PubMed  Google Scholar 

  81. Wright, N. A., Hoffmann, W., Otto, W. R., Rio, M. C. & Thim, L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 408, 121–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Nogueira, A. M. et al. Patterns of expression of trefoil peptides and mucins in gastric polyps with and without malignant transformation. J. Pathol. 187, 541–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Phalipon, A. et al. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17, 107–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Harada, N. et al. Human IgGFc binding protein (FcγBP) in colonic epithelial cells exhibits mucin-like structure. J. Biol. Chem. 272, 15232–15241 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi, K. et al. Distribution and partial characterisation of IgG Fc binding protein in various mucin producing cells and body fluids. Gut 51, 169–176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cebo, C. et al. Recombinant human interleukins IL-1α, IL-1β, IL-4, IL-6, and IL-7 show different and specific calcium-independent carbohydrate-binding properties. J. Biol. Chem. 276, 5685–5691 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Reader, J. R. et al. Interleukin-9 induces mucus cell metaplasia independent of inflammation. Am. J. Respir. Cell Mol. Biol. 28, 664–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dabbagh, K. et al. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 162, 6233–6237 (1999).

    CAS  PubMed  Google Scholar 

  89. Song, K. S. et al. Interleukin-1 β and tumor necrosis factor-α induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J. Biol. Chem. 278, 23243–23450 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Kibe, A. et al. Differential regulation by glucocorticoid of interleukin-13-induced eosinophilia, hyperresponsiveness, and goblet cell hyperplasia in mouse airways. Am. J. Respir. Crit. Care Med. 167, 50–56 (2003).

    Article  PubMed  Google Scholar 

  91. Enss, M. L. et al. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm. Res. 49, 162–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Murphy, M. S. Growth factors and the gastrointestinal tract. Nutrition 14, 771–774 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Bobek, L. A. & Situ, H. MUC7 20-Mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob. Agents Chemother. 47, 643–652 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Situ, H., Wei, G., Smith, C. J., Mashhoon, S. & Bobek, L. A. Human salivary MUC7 mucin peptides: effect of size, charge and cysteine residues on antifungal activity. Biochem. J. 375, 175–182 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brinkman-Van der Linden, E. C. & Varki, A. New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. J. Biol. Chem. 275, 8625–86232 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Hayashi, T. et al. MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion 63, S87–S92 (2001).

    Article  Google Scholar 

  97. Zrihan-Licht, S., Baruch, A., Elroy-Stein, O., Keydar, I. & Wreschner, D. H. Tyrosine phosphorylation of the MUC1 breast cancer membrane proteins. Cytokine receptor-like molecules. FEBS Lett. 356, 130–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Quin, R. J. & McGuckin, M. A. Phosphorylation of the cytoplasmic domain of the MUC1 mucin correlates with changes in cell-cell adhesion. Int. J. Cancer 87, 499–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Yamamoto, M., Bharti, A., Li, Y. & Kufe, D. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 272, 12492–12494 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Li, Y., Bharti, A., Chen, D., Gong, J. & Kufe, D. Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β- catenin. Mol. Cell. Biol. 18, 7216–7224 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wen, Y., Caffrey, T. C., Wheelock, M. J., Johnson, K. R. & Hollingsworth, M. A. Nuclear association of the cytoplasmic tail of muc1 and β-catenin. J. Biol. Chem. 278, 38029–38039 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Li, Y. & Kufe, D. The human DF3/MUC1 carcinoma-associated antigen signals nuclear localization of the catenin p120(ctn). Biochem. Biophys. Res. Commun. 281, 440–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Ren, J., Li, Y. & Kufe, D. Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J. Biol. Chem. 277, 17616–17622 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Pandey, P., Kharbanda, S. & Kufe, D. Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 55, 4000–4003 (1995).

    CAS  PubMed  Google Scholar 

  105. Swartz, M. J. et al. MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am. J. Clin. Pathol. 117, 791–796 (2002).

    Article  PubMed  Google Scholar 

  106. Zhu, X., Price-Schiavi, S. A. & Carraway, K. L. Extracellular regulated kinase (ERK)-dependent regulation of sialomucin complex/rat Muc4 in mammary epithelial cells. Oncogene 19, 4354–4361 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Komatsu, M., Jepson, S., Arango, M. E., Carothers Carraway, C. A. & Carraway, K. L. Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20, 461–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Carraway, K. L. et al. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: to protect and to survive. Prog. Nucleic Acid. Res. Mol. Biol. 71, 149–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002). Shows that Muc2 -knockout mice develop tumours, which raises the possibility that Muc2 functions as, or in concert with, a tumour-suppressor gene.

    Article  CAS  PubMed  Google Scholar 

  110. Yonezawa, S. et al. MUC2 gene expression is found in noninvasive tumors but not in invasive tumors of the pancreas and liver: its close relationship with prognosis of the patients. Hum. Pathol. 28, 344–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Yonezawa, S. & Sato, E. Expression of mucin antigens in human cancers and its relationship with malignancy potential. Pathol. Int. 47, 813–830 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Spicer, A. P., Rowse, G. J., Lidner, T. K. & Gendler, S. J. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem. 270, 30093–30101 (1995). First reported knockout of a mucin gene. Induction of tumours by mouse mammary tumour virus in Muc1 -deficient mice produces tumours with less aggressive growth properties.

    Article  CAS  PubMed  Google Scholar 

  113. Nakamori, S., Ota, D. M., Cleary, K. R., Shirotani, K. & Irimura, T. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Hiraga, Y. et al. Immunoreactive MUC1 expression at the deepest invasive portion correlates with prognosis of colorectal cancer. Oncology 55, 307–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Luttges, J., Feyerabend, B., Buchelt, T., Pacena, M. & Kloppel, G. The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am. J. Surg. Pathol. 26, 466–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Kashiwagi, H. et al. DF3 expression in human gallbladder carcinoma: significance for lymphatic invasion. Int. J. Oncol. 16, 455–459 (2000).

    CAS  PubMed  Google Scholar 

  117. Nitta, T., Sugihara, K., Tsuyama, S. & Murata, F. Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis. Cancer 88, 245–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Xu, Y., Kimura, N., Yoshida, R., Lin, H. & Yoshinaga, K. Immunohistochemical study of Muc1, Muc2 and human gastric mucin in breast carcinoma: relationship with prognostic factors. Oncol. Rep. 8, 1177–1182 (2001).

    CAS  PubMed  Google Scholar 

  119. Rahn, J. J., Dabbagh, L., Pasdar, M. & Hugh, J. C. The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 91, 1973–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Bramwell, M. E., Wiseman, G. & Shotton, D. M. Electron-microscopic studies of the CA antigen, epitectin. J. Cell Sci. 86, 249–261 (1986).

    Article  CAS  PubMed  Google Scholar 

  121. Ligtenberg, M. J., Buijs, F., Vos, H. L. & Hilkens, J. Suppression of cellular aggregation by high levels of episialin. Cancer Res. 52, 2318–2324 (1992).

    CAS  PubMed  Google Scholar 

  122. Kondo, K., Kohno, N., Yokoyama, A. & Hiwada, K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 58, 2014–2019 (1998).

    CAS  PubMed  Google Scholar 

  123. van de Wiel-van Kemenade, E. et al. Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. J. Immunol. 151, 767–776 (1993).

    CAS  PubMed  Google Scholar 

  124. Wesseling, J., van der Valk, S. W., Vos, H. L., Sonnenberg, A. & Hilkens, J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell Biol. 129, 255–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Wesseling, J., van der Valk, S. W. & Hilkens, J. A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol. Biol. Cell 7, 565–577 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kam, J. L. et al. MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res. 58, 5577–5581 (1998).

    CAS  PubMed  Google Scholar 

  127. Zhang, K., Baeckstrom, D., Brevinge, H. & Hansson, G. C. Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J. Cell. Biochem. 60, 538–549 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Nath, D. et al. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98, 213–219 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kohlgraf, K. G. et al. Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 63, 5011–5020 (2003).

    CAS  PubMed  Google Scholar 

  130. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lukacs, N. W. Migration of helper T-lymphocyte subsets into inflamed tissues. J. Allergy Clin. Immunol. 106, S264–S269 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, Y. J., Borsig, L., Han, H. L., Varki, N. M. & Varki, A. Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am. J. Pathol. 155, 461–472 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kannagi, R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12, 599–608 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Cohen, P. A. et al. T-cell adoptive therapy of tumors: mechanisms of improved therapeutic performance. Crit. Rev. Immunol. 21, 215–248 (2001).

    CAS  PubMed  Google Scholar 

  135. Chan, A. K. et al. Soluble MUC1 secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation. Int. J. Cancer 82, 721–726 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Gimmi, C. D. et al. Breast cancer-associated antigen, DF3/MUC1, induces apoptosis of activated human T cells. Nature Med. 2, 1367–1370 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Agrawal, B., Krantz, M. J., Reddish, M. A. & Longenecker, B. M. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nature Med. 4, 43–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Wykes, M. et al. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukoc. Biol. 72, 692–701 (2002).

    CAS  PubMed  Google Scholar 

  139. Agrawal, B., Gendler, S. J. & Longenecker, B. M. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol. Med. Today 4, 397–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Komatsu, M., Yee, L. & Carraway, K. L. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res. 59, 2229–2236 (1999).

    CAS  PubMed  Google Scholar 

  141. Rhodes, J. M. Usefulness of novel tumour markers. Ann. Oncol. 10, 118–121 (1999).

    Article  PubMed  Google Scholar 

  142. Bast, R. C. Jr et al. Early detection of ovarian cancer: promise and reality. Cancer Treat. Res. 107, 61–97 (2002).

    Article  PubMed  Google Scholar 

  143. Ho, J. J., Chung, Y. S., Yuan, M., Henslee, J. G. & Kim, Y. S. Differences in expression of SPan-1 and CA15-3 antigens in blood and tissues. Int. J. Cancer 52, 693–700 (1992).

    Article  CAS  PubMed  Google Scholar 

  144. Grankvist, K., Ljungberg, B. & Rasmuson, T. Evaluation of five glycoprotein tumour markers (CEA, CA-50, CA-19-9, CA-125, CA-15-3) for the prognosis of renal-cell carcinoma. Int. J. Cancer 74, 233–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Banfi, G., Bravi, S., Ardemagni, A. & Zerbi, A. CA 19.9, CA 242 and CEA in the diagnosis and follow-up of pancreatic cancer. Int. J. Biol. Markers 11, 77–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Sagar, P. M. et al. The tumour marker CA 195 in colorectal and pancreatic cancer. Int. J. Biol. Markers 6, 241–246 (1991).

    Article  CAS  PubMed  Google Scholar 

  147. Banfi, G. et al. Behavior of tumor markers CA19.9, CA195, CAM43, CA242, and TPS in the diagnosis and follow-up of pancreatic cancer. Clin. Chem. 39, 420–423 (1993).

    Article  CAS  PubMed  Google Scholar 

  148. Kawa, S. et al. Clinical evaluation of pancreatic cancer-associated mucin expressing CA19-9, CA50, Span-1, sialyl SSEA-1, and Dupan-2. Scand. J. Gastroenterol. 27, 635–643 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Kinney, A. Y. et al. The prognostic significance of sialyl-Tn antigen in women treated with breast carcinoma treated with adjuvant chemotherapy. Cancer 80, 2240–2249 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Rye, P. D. & McGuckin, M. A. MUC1: antibodies and immunoassays. Tumour Biol. 22, 269–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Norum, L. F., Sauren, A. M., Rye, P. D. & Nustad, K. New immunoassays for MUC1 in breast cancer. Tumour Biol. 22, 216–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Gullo, L. CA19-9: the Italian experience. Pancreas 9, 717–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Gebauer, G. & Muller-Ruchholtz, W. Tumor marker concentrations in normal and malignant tissues of colorectal cancer patients and their prognostic relevance. Anticancer Res. 17, 2939–2942 (1997).

    CAS  PubMed  Google Scholar 

  154. Niklinski, J. & Furman, M. Clinical tumour markers in lung cancer. Eur. J. Cancer Prev. 4, 129–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Hollingsworth, M. A., Strawhecker, J. M., Caffrey, T. C. & Mack, D. R. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int. J. Cancer 57, 198–203 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Burdick, M. D., Harris, A., Reid, C. J., Iwamura, T. & Hollingsworth, M. A. Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J. Biol. Chem. 272, 24198–24202 (1997).

    Article  CAS  PubMed  Google Scholar 

  157. Chambers, J. A., Hollingsworth, M. A., Trezise, A. E. & Harris, A. Developmental expression of mucin genes MUC1 and MUC. J. Cell. Sci. 107, 413–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Reid, C. J. & Harris, A. Developmental expression of mucin genes in the human gastrointestinal system. Gut 42, 220–226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reid, C. J., Gould, S. & Harris, A. Developmental expression of mucin genes in the human respiratory tract. Am. J. Respir. Cell Mol. Biol. 17, 592–598 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Yin, B. W., Dnistrian, A. & Lloyd, K. O. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int. J. Cancer 98, 737–740 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. O'Brien, T. J., Beard, J. B., Underwood, L. J. & Shigemasa, K. The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biol. 23, 154–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Colcher, D. M., Milenic, D. E. & Schlom, J. Generation and characterization of monoclonal antibody B72.3. Experimental and preclinical studies. Targeted Diagn. Ther. 6, 23–44 (1992).

    CAS  PubMed  Google Scholar 

  163. Beum, P. V., Singh, J., Burdick, M., Hollingsworth, M. A. & Cheng, P. W. Expression of core 2 β-1,6-N-acetylglucosaminyltransferase in a human pancreatic cancer cell line results in altered expression of MUC1 tumor-associated epitopes. J. Biol. Chem. 274, 24641–24648 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Rosenblum, M. G. et al. Clinical pharmacology, metabolism, and tissue distribution of 90Y-labeled monoclonal antibody B72. 3 after intraperitoneal administration. J. Natl Cancer Inst. 83, 1629–1636 (1991).

    Article  CAS  PubMed  Google Scholar 

  165. Meredith, R. F. et al. Intraperitoneal radioimmunotherapy of ovarian cancer with lutetium-177-CC49. J. Nucl. Med. 37, 1491–1496 (1996).

    CAS  PubMed  Google Scholar 

  166. Riva, P., Franceschi, G., Gentile, R., Riva, N. & Casi, M. Radioimmunodetection and radioimmunotherapy of breast cancer. Tumori 83, 552–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Mardirossian, G. et al. Radiation absorbed dose estimates for indium-111-labeled B72.3, an IgG antibody to ovarian and colorectal cancer: MIRD dose estimate report No. 18. J. Nucl. Med. 39, 671–676 (1998).

    CAS  PubMed  Google Scholar 

  168. Mulligan, T. et al. Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin. Cancer Res. 1, 1447–1454 (1995).

    CAS  PubMed  Google Scholar 

  169. Meredith, R. F. et al. Phase II study of dual 131I-labeled monoclonal antibody therapy with interferon in patients with metastatic colorectal cancer. Clin. Cancer Res. 2, 1811–1818 (1996).

    CAS  PubMed  Google Scholar 

  170. Goel, A. et al. Single-dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using 131I-labeled multivalent CC49 single-chain fvs. Clin. Cancer Res. 7, 175–184 (2001).

    CAS  PubMed  Google Scholar 

  171. Goldenberg, D. M. Targeted therapy of cancer with radiolabeled antibodies. J. Nucl. Med. 43, 693–713 (2002).

    CAS  PubMed  Google Scholar 

  172. Richman, C. M. & DeNardo, S. J. Systemic radiotherapy in metastatic breast cancer using 90Y-linked monoclonal MUC-1 antibodies. Crit. Rev. Oncol. Hematol. 38, 25–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Cardillo, T. M., Blumenthal, R., Ying, Z. & Gold, D. V. Combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer. Int. J. Cancer 97, 386–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Noujaim, A. A., Schultes, B. C., Baum, R. P. & Madiyalakan, R. Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13: evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother. Radiopharm. 16, 187–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Pecher, G., Haring, A., Kaiser, L. & Thiel, E. Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol. Immunother. 51, 669–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Goydos, J. S., Elder, E., Whiteside, T. L., Finn, O. J. & Lotze, M. T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63, 298–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Musselli, C. et al. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int. J. Cancer 97, 660–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Reddish, M. et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int. J. Cancer 76, 817–823 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. George, S. K. et al. Chemoenzymatic synthesis of sialylated glycopeptides derived from mucins and T-cell stimulating peptides. J. Am. Chem. Soc. 123, 11117–11125 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Karanikas, V. et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100, 2783–2792 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Balloul, J. M. et al. Recombinant MUC 1 vaccinia virus: a potential vector for immunotherapy of breast cancer. Cell. Mol. Biol. 40, S49–S59 (1994).

    Google Scholar 

  182. Ragupathi, G. et al. Vaccines prepared with sialyl-Tn and sialyl-Tn trimers using the 4-(4-maleimidomethyl)cyclohexane-1-carboxyl hydrazide linker group result in optimal antibody titers against ovine submaxillary mucin and sialyl-Tn-positive tumor cells. Cancer Immunol. Immunother. 48, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. Miles, D. W. et al. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer. Br. J. Cancer 74, 1292–1296 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. MacLean, G. D., Miles, D. W., Rubens, R. D., Reddish, M. A. & Longenecker, B. M. Enhancing the effect of THERATOPE STn-KLH cancer vaccine in patients with metastatic breast cancer by pretreatment with low-dose intravenous cyclophosphamide. J. Immunother. Emphasis Tumor. Immunol. 19, 309–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Sabbatini, P. J. et al. Immunization of ovarian cancer patients with a synthetic Lewis(y)-protein conjugate vaccine: a phase 1 trial. Int. J. Cancer 87, 79–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Adluri, S. et al. Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol. Immunother. 41, 185–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  187. Ragupathi, G. et al. On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc. Natl Acad. Sci. USA 99, 13699–13704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in M.A.H.'s laboratory is supported by grants from the National Cancer Institute (NCI) of the National Institutes of Health. B.J.S. is supported by an NCI training grant and by the University of Nebraska Medical Center. The authors thank the reviewers and the following individuals for helpful suggestions and discussions: J. Anderson, S. Batra, T. Caffrey, J. Gum, A. Harris, A. Rizzino, X. Shen, P. Singh, J. Tremayne, H. Tsutsumeida, C. Yi, G. Suryanarayanan and Y. Wen. We acknowledge that this field of research is built upon the efforts of many and apologize to those authors not cited here because of the need for brevity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Hollingsworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

LocusLink

EGF

ERBB

ICAM-1

IL-1

IL-4

IL-6

IL-7

IL-9

IL-13

MUC1

MUC2

MUC4

MUC6

MUC7

MUC12

MUC13

MUC16

MUC17

MUC3A

MUC3B

MUC5AC

MUC5B

TACE

TNF-α

Glossary

TUMOUR-ASSOCIATED ANTIGEN

(TAA). An antigen that can evoke an immune response but is not unique to tumour cells. TAAs can arise from expression of developmentally restricted genes, overexpression of proteins that are normally expressed at low levels or post-translational modifications that give rise to unique epitopes.

BLOOD-GROUP ANTIGENS

Terminal oligosaccharides that are commonly found on proteins and glycolipids of red blood cells and leukocytes. They are also found on mucins and epithelial tumours.

O-GLYCOSYLATION

Chemical linking of monomeric carbohydrate moieties to the hydroxyl side group of serine and threonine residues of proteins. Mucin-type O-glycosylation is initiated by addition of a GalNAc residue to a serine or threonine, followed by sequential addition of carbohydrate residues. O-glycosylation is catalyzed enzymatically by glycosyltransferases, which act sequentially on specific substrates.

SULPHATION

An oligosaccharide modification in which a sulphate ester is chemically linked to the 6-hydroxyl group of GlcNAc or the 3-hydroxyl group of galactose. Sulphation has important roles in creating ligands for selectins and contributes to other ligand–receptor interactions.

STOICHIOMETRIC POWER

An effect created by densely arrayed repeating units of oligosaccharides (or other structures) that are attached to tandem repeats of mucin-type core proteins. The net effect is to create a locally high concentration of specific molecular structures.

THE TREFOIL MOTIF

Three loops that are formed by intrachain disulphide bonds in a 1–5, 2–4, 3–6 configuration between six conserved cysteine residues.

GOBLET CELLS

Specialized epithelial cells that secrete mucins by granular exocytosis.

INTRACELLULAR ADHESION MOLECULE-1

(ICAM-1). A member of the superfamily of immunoglobulin-like adhesion molecules, constitutively found on endothelial cells and some lymphocytes and monocytes. ICAM-1 has been shown to bind to extracellular MUC1 in vitro.

β-CATENIN

A member of the WNT signalling cascade. In cancer, β-catenin often accumulates in the nucleus where it binds to the TCF/LEF transcription factors to activate transcription. It has a key role in morphogenetic signal transduction, and interacts with several cell-surface adhesion molecules (cadherins) and with the cytoplasmic tail of MUC1.

MAPK PATHWAY

(Mitogen-activated protein kinase pathway). A signal-transduction pathway involving several kinases that is responsive to numerous external stimuli (growth factors, differentiation factors, other cellular conditions).

KIP1

A cyclin-dependent-kinase inhibitor. In response to DNA damage or anti-mitogenic signals, KIP1 binds to cyclin-dependent-kinase complexes and inhibits their function, thereby leading to cell-cycle arrest. Binding of MUC4 to ERBB2 increases expression of KIP1, which might lead to growth arrest.

SIGLECS

Sialic-acid binding immunoglobulin-like lectin proteins, which have important roles in mediating cell adhesion and other receptor–ligand events that involve oligosaccharide moieties.

SIALYL LEWIS A

Terminal oligosaccharide that is commonly overexpressed in cancer.

ENZYME-LINKED IMMUNOSORBENT ASSAY

(ELISA). A solid-phase immunoassay that detects the interaction between proteins and specific antibodies.

SIALYL TN

Short terminal oligosaccharide that is commonly synthesized in cancer cells but is not found in most normal tissues.

SIALYL LEWIS X

Terminal oligosaccharide that is commonly overexpressed in cancer.

RADIOIMMUNOCONJUGATES

Antibodies that are conjugated to radionuclides designed to bind to tumour antigens.

PASSIVE IMMUNOTHERAPY

The administration to a patient of pre-formed antibodies for an antigen to which the patient does not have an active immune response.

IMMUNOSCINTIGRAPHIC AGENT

An antibody that is conjugated to a radionuclide or chemical that can be given to patients and visualized in order to define tumour boundaries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollingsworth, M., Swanson, B. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4, 45–60 (2004). https://doi.org/10.1038/nrc1251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing