Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Merlin and ERM proteins: unappreciated roles in cancer development?

Abstract

Merlin is closely related to ezrin, radixin and moesin (ERMs) — membrane–cytoskeleton-associated proteins that belong to the protein 4.1 superfamily. Although merlin is the only member of the merlin/ERM subfamily that is known to function as a tumour suppressor, common subcellular localization, shared interacting partners and physical interaction between merlin and the ERMs indicate that functional overlap exists. Mouse models indicate that merlin inactivation might have an unappreciated role in human cancer aetiology. So, could the ERM proteins also have a role in cancer development?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overlapping, yet contrasting, models for ERM and merlin regulation.
Figure 2: Functions of ERM/merlin and implications in cancer.

References

  1. 1

    Baser, M. E., Evans, D. G. & Gutmann, D. H. Neurofibromatosis 2. Curr. Opin. Neurol. 16, 27–33 (2003).

    PubMed  Article  Google Scholar 

  2. 2

    Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the Neurofibromatosis 2 tumor suppressor. Cell 72, 791–800 (1993).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    McClatchey, A. I., Saotome, I., Ramesh, V., Gusella, J. F. & Jacks, T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 11, 1253–1265 (1997).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 12, 1121–1133 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617–1630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060–1065 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J. Biol. Chem. 274, 2315–2321 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Kikuchi, S. et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genet. 31, 320–325 (2002).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J. 19, 4565–4576 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Crepaldi, T., Gautreau, A., Comoglio, P., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Wick, W. et al. Ezrin-dependent promotion of glioma cell clonogenecity, motility, and invasion mediated by BCL-2 and transforming growth factor-β2. J. Neurosci. 21, 3360–3368 (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Akisawa, N., Nishimori, I., Iwamura, T., Onishi, S. & Hollingsworth, M. A. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem. Biophys. Res. Commun. 258, 395–400 (1999).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Nestl, A. et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Canc. Res. 61, 1569–1577 (2001).

    CAS  Google Scholar 

  16. 16

    Khanna, C. et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Canc. Res. 61, 3750–3759 (2001).

    CAS  Google Scholar 

  17. 17

    McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the Neurofibromatosis 2 tumor suppressor, merlin. J. Cell Biol. 133, 843–852 (1996).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Boedigheimer, M. & Laughon, A. Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development 118, 1291–1301 (1993).

    CAS  PubMed  Google Scholar 

  19. 19

    Tran, Y. K. et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res. 59, 35–43 (1999).

    CAS  PubMed  Google Scholar 

  20. 20

    Chishti, A. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    James, M. F., Manchanda, N., Gonzalez-Agosti, C., Hartwig, J. H. & Ramesh, V. The Neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem. J. 356, 377–386 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Scoles, D. R. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nature Genet. 18, 354–359 (1998).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Berryman, M., Gary, R. & Bretscher, A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J. Cell Biol. 131, 1231–1242 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem. 270, 31377–31385 (1995).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Bretscher, A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J. Cell Biol, 108, 921–930 (1989).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem. 267, 19258–19265 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043 (1993).

    CAS  PubMed  Google Scholar 

  31. 31

    Yang, H. -S. & Hinds, P. W. Increased ezrin expression and activation by cdk5 coincident with acquisition of the senescent phenotype. Mol. Cell 11, 1163–1176 (2003).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Niggli, V., Andreoli, C., Roy, C. & Mangeat, P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 376, 172–176 (1995).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Yonemura, S., Matsui, T., Tsukita, S. & Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569–2580 (2002).

    CAS  PubMed  Google Scholar 

  34. 34

    Shaw, R. J., McClatchey, A. I. & Jacks, T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J. Biol. Chem. 273, 7757–7764 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell. 1, 63–72 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J. Cell Biol. 141, 1589–1599 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Gonzalez-Agosti, C., Wiederhold, T., Herndon, M. E., Gusella, J. F. & Ramesh, V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J. Biol. Chem. 274, 34438–34442 (1999).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Gronholm, M. et al. Homotypic and heterotypic interaction of the Neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein. J. Cell Sci. 112, 895–904 (1999).

    CAS  PubMed  Google Scholar 

  39. 39

    Meng, J. J. et al. Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggesting modulation of ERM proteins by merlin. J. Neurosci. Res. 62, 491–502 (2000).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Nguyen, R., Reczek, D. & Bretscher, A. Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem. 276, 7621–7629 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Kissil, J. L., Johnson, K. C., Eckman, M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem. 277, 10394–10399 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Xiao, G. H., Beeser, A., Chernoff, J. & Testa, J. R. p21-activated kinase links Rac/cdc42 signaling to merlin. J. Biol. Chem. 277, 883–886 (2002).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Lamb, R. F. et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nature Cell Biol. 2, 281–287 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein, Dbl. Oncogene 16, 3279–3284 (1998).

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Maeda, M., Matsui, T., Imamura, M., Tsukita, S. & Tsukita, S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene 18, 4788–4797 (1999).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Sahai, E. & Marshall, C. RHO-GTPases and cancer. Nature Rev. Cancer 2, 133–142 (2002).

    Article  Google Scholar 

  52. 52

    LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. A systematic screen for dominant second-site modifiers of merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler. Genetics, 158, 667–679 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    DeClue, J. E. et al. Epidermal growth factor receptor expression in Neurofibromatosis type 1-related tumors and NF1 animal models. J. Clin. Invest. 105, 1233–1124 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Scoles, D. R. et al. The Neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate. Hum. Mol. Genet. 9, 1567–1574 (2000).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Stahl, P. D. & Barbieri, M. Multivesicular bodies and multivesicular endosomes: the “ins” and “outs” of endosomal traffic. Sciences STKE [online], (cited 16 Jul. 2002), <http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/141/pe32> (2002).

  56. 56

    Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169–179 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Murthy, A. et al. NHE-RF, a regulatory factor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J. Biol. Chem. 273, 1273–1276 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Maudsley, S. et al. Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol. Cell Biol. 20, 8352–8363 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Reczek, D. & Bretscher, A. Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP. J. Cell Biol. 153, 191–206 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Tsukita, S. et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeleton. J. Cell Biol. 126, 391–401 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Sainio, M. et al. Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J. Cell Sci. 110, 2249–2260 (1997).

    CAS  PubMed  Google Scholar 

  62. 62

    Morrison, H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 15, 968–980 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Bourguignon, L. Y. et al. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J. Biol. Chem. 272, 27913–27918 (1997).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Sherman, L. S., Rizvi, T. A., Karyala, S. & Ratner, N. CD44 enhances neuregulin signaling by Schwann cells. J. Cell Biol. 150, 1071–1084 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Fernandez-Valle, C. et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nature Genet. 31, 354–362 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 17, 1090–1100 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Pujuguet, P., Del Maestro, L., Gautreau, A., Louvard, D. & Arpin, M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol. Biol. Cell 14, 2181–2191 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Nollet, F., Berx, G. & van Roy, F. The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol. Cell. Biol. Res. Comm. 2, 77–85 (2000).

    Article  CAS  Google Scholar 

  70. 70

    Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    PubMed  Article  CAS  Google Scholar 

  71. 71

    Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Article  Google Scholar 

  72. 72

    Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422, 322–326 (2003).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Gautreau, A. et al. Mutant products of the NF2 tumor suppressor gene are degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 277, 31279–31282 (2002).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Kimura, Y. et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nature Med. 4, 915–922 (1998).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Korf, B. R. Clinical features and pathobiology of NF1. J. Child Neurol. 17, 573–577 (2002).

    PubMed  Article  Google Scholar 

  76. 76

    Lee, W. C. & Testa, J. R. Somatic alterations in human malignant mesothelioma. Int. J. Oncol. 14, 181–188 (1999).

    CAS  PubMed  Google Scholar 

  77. 77

    Melendez-Vasquez, C. V. et al. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc. Natl Acad. Sci USA 98, 1235–1240 (2001).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Scherer, S. S., Xu, T., Crino, P., Arroyo, E. J. & Gutmann, D. H. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J. Neurosci Res. 65, 150–164 (2001).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Cullinan, P., Sperling, A. I. & Burkhardt, J. K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev. 189, 111–122 (2002).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Miller, K. G. A role for moesin in polarity. Trends Cell Biol. 13, 165–168 (2003).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Takeda, T., McQuistan, T., Orlando, R. A. & Farquhar, M. G. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J. Clin. Invest. 108, 289–301 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Denisenko-Nehrbass, N. et al. Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and β1 integrin in the central nervous system. J. Neurochem. 84, 209–221

  83. 83

    Sherman, L. et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15, 2505–2509 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Johnson, K. C., Kissil, J. L., Fry, J. L. & Jacks, T. Cellular transformation by a FERM domain mutant of the Nf2-tumor suppressor gene. Oncogene 21, 5990–5997 (2002).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev. 13, 978–986 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

It was very difficult to keep the scope of this review focused given the amount of interesting work that has been published recently — I apologize to those whose work was omitted or only briefly mentioned due to space limitations. I would like to thank M. Curto and D. Lallemand for their comments and interesting speculative discussions. A. I. M. is supported by the American Cancer Society and the Department of Defense.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD44

DAL1

DBL

EBP50

EGF

EPI64

ERBB2

expanded

HGF

HRS

MET

nadrin

NF2

RAC1

RHOA

RHOGDI

OMIM

neurofibromatosis type 2

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McClatchey, A. Merlin and ERM proteins: unappreciated roles in cancer development?. Nat Rev Cancer 3, 877–883 (2003). https://doi.org/10.1038/nrc1213

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing