Unconventional therapy for prostate cancer: good, bad or questionable?

Key Points

  • The protracted natural history and lack of curative therapy for advanced prostate cancer makes complementary and alternative medicine (CAM) attractive to patients.

  • CAM is as widely practiced as traditional medicine.

  • Antioxidant and hormonal influences of dietary and alternative therapies hold promise for the prevention and treatment of prostate cancer.

  • The lack of quality control of CAMs that are offered as dietary supplements makes them susceptible to adulteration.

  • New models for how to incorporate studies of CAM into chemoprevention and therapeutic trials are badly needed.

Abstract

Complementary and alternative medicine (CAM) encompasses a wide range of interventions that are often used for the prevention and treatment of malignant disease. As prostate cancer is characterized by strong dietary influences, a long disease latency period and limited treatment strategies for advanced disease, many patients turn to CAM with the belief that they represent a viable therapeutic option that is free of adverse side effects. Although the efficacy of many CAM therapies seems compelling, definitive studies are underway and the potentially harmful effects of these 'natural' interventions need to be recognized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Prostate carcinogenesis and potential intervention points for nutrient and botanical agents.
Figure 2: Antioxidant effect of carotenoids: scavenging of reactive oxygen species and prevention of cellular damage.

References

  1. 1

    Jemal, A. et al. Cancer statistics, 2003. CA Cancer J. Clin. 53, 5–26 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Engel, L. W. & Straus, S. E. Development of therapeutics: opportunities within complementary and alternative medicine. Nature Rev. Drug Discov. 1, 229–237 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Eisenberg, D. M. et al. Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA 280, 1569–1575 (1998).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Eisenberg, D. M. et al. Unconventional medicine in the United States. Prevalence, costs, and patterns of use. N. Engl. J. Med. 328, 246–252 (1993). A landmark study that documents the extent and patterns of CAM use in the United States.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Jones, H. A., Metz, J. M., Devine, P., Hahn, S. M. & Whittington, R. Rates of unconventional medical therapy use in patients with prostate cancer: standard history versus directed questions. Urology 59, 272–276 (2002).

    PubMed  Article  Google Scholar 

  6. 6

    Kelloff, G. J. et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr. 130, 467S–471S (2000).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Fletcher, R. H. & Fairfield, K. M. Vitamins for chronic disease prevention in adults: clinical applications. JAMA 287, 3127–3129 (2002).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Nam, R. K. et al. Prevalence and patterns of the use of complementary therapies among prostate cancer patients: an epidemiological analysis. J. Urol. 161, 1521–1524 (1999).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Zhang, X. K. Vitamin A and apoptosis in prostate cancer. Endocr. Relat. Cancer 9, 87–102 (2002).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Rohan, T. E., Howe, G. R., Burch, J. D. & Jain, M. Dietary factors and risk of prostate cancer: a case–control study in Ontario, Canada. Cancer Causes Control 6, 145–154 (1995).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Schuurman, A. G., Goldbohm, R. A., Brants, H. A. & van den Brandt, P. A. A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Control 13, 573–582 (2002).

    PubMed  Article  Google Scholar 

  12. 12

    Dawson, M. I. The importance of vitamin A in nutrition. Curr. Pharm. Des. 6, 311–325 (2000).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Jamison, J. M., Gilloteaux, J., Taper, H. S. & Summers, J. L. Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer. J. Nutr. 131, 158S–160S (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Daviglus, M. L. et al. Dietary β-carotene, vitamin C, and risk of prostate cancer: results from the Western Electric Study. Epidemiology 7, 472–427 (1996).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Willis, M. S. & Wians, F. H. The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances. Clin. Chim. Acta 330, 57–83 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Kristal, A. R., Stanford, J. L., Cohen, J. H., Wicklund, K. & Patterson, R. E. Vitamin and mineral supplement use is associated with reduced risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 8, 887–892 (1999).

    CAS  PubMed  Google Scholar 

  17. 17

    Miller, G. J. Vitamin D and prostate cancer: biologic interactions and clinical potentials. Cancer Metastasis Rev. 17, 353–360 (1998).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Schwartz, G. G. & Hulka, B. S. Is vitamin D deficiency a risk factor for prostate cancer? Anticancer Res. 10, 1307–1311 (1990).

    CAS  PubMed  Google Scholar 

  19. 19

    Schwartz, G. G., Hill, C. C., Oeler, T. A., Becich, M. J. & Bahnson, R. R. 1,25-Dihydroxy-16-ene-23-yne-vitamin D3 and prostate cancer cell proliferation in vivo. Urology 46, 365–369 (1995).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Lokeshwar, B. L. et al. Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol. Biomarkers Prev. 8, 241–248 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Beer, T. M. et al. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol. 21, 123–128 (2003).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Chan, J. M. & Giovannucci, E. L. Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol. Rev. 23, 87–92 (2001).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Jiang, Q., Christen, S., Shigenaga, M. K. & Ames, B. N. γ-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74, 714–722 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Sigounas, G., Anagnostou, A. & Steiner, M. dl-α-tocopherol induces apoptosis in erythroleukemia, prostate, and breast cancer cells. Nutr. Cancer 28, 30–35 (1997).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Zhang, Y. et al. Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc. Natl Acad. Sci. USA 99, 7408–7413 (2002).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Vlajinac, H. D., Marinkovic, J. M., Ilic, M. D. & Kocev, N. I. Diet and prostate cancer: a case–control study. Eur. J. Cancer 33, 101–107 (1997).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Deneo-Pellegrini, H., De Stefani, E., Ronco, A. & Mendilaharsu, M. Foods, nutrients and prostate cancer: a case–control study in Uruguay. Br. J. Cancer 80, 591–597 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Tzonou, A. et al. Diet and cancer of the prostate: a case–control study in Greece. Int. J. Cancer 80, 704–708 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Heinonen, O. P. et al. Prostate cancer and supplementation with α-tocopherol and β-carotene: incidence and mortality in a controlled trial. J. Natl Cancer Inst. 90, 440–446 (1998).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Moyad, M. A. Selenium and vitamin E supplements for prostate cancer: evidence or embellishment? Urology 59, 9–19 (2002).

    PubMed  Article  Google Scholar 

  31. 31

    Gann, P. H. et al. Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res. 59, 1225–1230 (1999). Epidemiological study that indicates a role for lycopene in preventing prostate cancer.

    CAS  PubMed  Google Scholar 

  32. 32

    Chan, J. M. et al. Supplemental vitamin E intake and prostate cancer risk in a large cohort of men in the United States. Cancer Epidemiol. Biomarkers Prev. 8, 893–899 (1999).

    CAS  PubMed  Google Scholar 

  33. 33

    Liede, K. E., Haukka, J. K., Saxen, L. M. & Heinonen, O. P. Increased tendency towards gingival bleeding caused by joint effect of α-tocopherol supplementation and acetylsalicylic acid. Ann. Med. 30, 542–546 (1998).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Klein, E. A. et al. SELECT: the next prostate cancer prevention trial. Selenium and Vitamin E Cancer Prevention Trial. J. Urol. 166, 1311–1315 (2001).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Combs, G. F. Jr & Combs, S. B. The nutritional biochemistry of selenium. Annu. Rev. Nutr. 4, 257–280 (1984).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276, 1957–1963 (1996). Randomized study of selenium supplementation that suppressed the development of prostate cancer.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Menter, D. G., Sabichi, A. L. & Lippman, S. M. Selenium effects on prostate cell growth. Cancer Epidemiol. Biomarkers Prev. 9, 1171–1182 (2000).

    CAS  PubMed  Google Scholar 

  38. 38

    Platz, E. A. & Helzlsouer, K. J. Selenium, zinc, and prostate cancer. Epidemiol. Rev. 23, 93–101 (2001).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Griffin, A. C. Role of selenium in the chemoprevention of cancer. Adv. Cancer Res. 29, 419–442 (1979).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Dong, Y., Zhang, H., Hawthorn, L., Ganther, H. E. & Ip, C. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63, 52–59 (2003).

    CAS  PubMed  Google Scholar 

  41. 41

    Duffield-Lillico, A. J. et al. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomarkers Prev. 11, 630–9 (2002).

    CAS  PubMed  Google Scholar 

  42. 42

    Vinceti, M., Wei, E. T., Malagoli, C., Bergomi, M. & Vivoli, G. Adverse health effects of selenium in humans. Rev. Environ. Health 16, 233–251 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Giovannucci, E. et al. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 58, 442–447 (1998).

    CAS  PubMed  Google Scholar 

  44. 44

    Berndt, S. I. et al. Calcium intake and prostate cancer risk in a long-term aging study: the Baltimore Longitudinal Study of Aging. Urology 60, 1118–1123 (2002).

    PubMed  Article  Google Scholar 

  45. 45

    Jain, M. G., Hislop, G. T., Howe, G. R., Burch, J. D. & Ghadirian, P. Alcohol and other beverage use and prostate cancer risk among Canadian men. Int. J. Cancer 78, 707–711 (1998).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Gupta, S., Hussain, T. & Mukhtar, H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem. Biophys. 410, 177–185 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Garbisa, S. et al. Tumor invasion: molecular shears blunted by green tea. Nature Med. 5, 1216 (1999).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S. & Mukhtar, H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl Acad. Sci. USA 98, 10350–10355 (2001).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Zhou, J. R., Yu, L., Zhong, Y. & Blackburn, G. L. Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J. Nutr. 133, 516–521 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Pisters, K. M. et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J. Clin. Oncol. 19, 1830–1838 (2001).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Jatoi, A. et al. A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer 97, 1442–1446 (2003).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Evans, B. A., Griffiths, K. & Morton, M. S. Inhibition of 5 α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J. Endocrinol. 147, 295–302 (1995).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Markovits, J. et al. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res. 49, 5111–5117 (1989).

    CAS  PubMed  Google Scholar 

  54. 54

    Mentor-Marcel, R., Lamartiniere, C. A., Eltoum, I. E., Greenberg, N. M. & Elgavish, A. Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res. 61, 6777–6782 (2001).

    CAS  PubMed  Google Scholar 

  55. 55

    Trevedi, C. Modulation in prostate cancer (PCA) patients (Pts) by soy isoflavones (SI). Am. Soc. Clin. Oncol. A1363 (2000).

  56. 56

    Pidgeon, G. P., Kandouz, M., Meram, A. & Honn, K. V. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res. 62, 2721–2727 (2002).

    CAS  PubMed  Google Scholar 

  57. 57

    Chen, S. et al. Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif. 34, 293–304 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Timar, J. et al. Expression, subcellular localization and putative function of platelet-type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int. J. Cancer 87, 37–43 (2000).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Ye, F., Xui, L., Yi, J., Zhang, W. & Zhang, D. Y. Anticancer activity of Scutellaria baicalensis and its potential mechanism. J. Altern. Complement. Med. 8, 567–572 (2002).

    PubMed  Article  Google Scholar 

  60. 60

    Sovak, M. et al. Herbal composition PC-SPES for management of prostate cancer: identification of active principles. J. Natl Cancer Inst. 94, 1275–1281 (2002). A detailed and scientific delineation of the adulterants in PC-SPES and their variation with patterns of use of the mixture.

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Mills, P. K., Beeson, W. L., Phillips, R. L. & Fraser, G. E. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64, 598–604 (1989).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J. & Willett, W. C. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl Cancer Inst. 94, 391–398 (2002).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Giovannucci, E. et al. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl Cancer Inst. 87, 1767–1776 (1995).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Cohen, J. H., Kristal, A. R. & Stanford, J. L. Fruit and vegetable intakes and prostate cancer risk. J. Natl Cancer Inst. 92, 61–68 (2000).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Bohm, F., Tinkler, J. H. & Truscott, T. G. Carotenoids protect against cell membrane damage by the nitrogen dioxide radical. Nature Med. 1, 98–99 (1995).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Di Mascio, P., Kaiser, S. & Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem. Biophys. 274, 532–538 (1989).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Nahum, A. et al. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes. Oncogene 20, 3428–3436 (2001).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Guttenplan, J. B. et al. Effects of a lycopene-rich diet on spontaneous and benzo[a]pyrene-induced mutagenesis in prostate, colon and lungs of the lacZ mouse. Cancer Lett. 164, 1–6 (2001).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Chen, L. et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J. Natl Cancer Inst. 93, 1872–1879 (2001). A prospective study of the preoperative use of tomato products showed that markers of oxidant damage in prostate, prostate cancer and peripheral blood were significantly reduced with tomato products that contained high levels of lycopene.

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Kucuk, O. et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol. Biomarkers Prev. 10, 861–868 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Marks, L. S. et al. PC-SPES: herbal formulation for prostate cancer. Urology 60, 369–375 (2002).

    PubMed  Article  Google Scholar 

  72. 72

    Pandha, H. S. & Kirby, R. S. PC-SPES: phytotherapy for prostate cancer. Lancet 359, 2213–2215 (2002).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Chenn, S. In vitro mechanism of PC SPES. Urology 58, 28–35 (2001).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Gerber, G. S. Saw palmetto for the treatment of men with lower urinary tract symptoms. J. Urol. 163, 1408–1412 (2000).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Wilt, T. J. et al. Saw palmetto extracts for treatment of benign prostatic hyperplasia: a systematic review. JAMA 280, 1604–1609 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Goldmann, W. H. et al. Saw palmetto berry extract inhibits cell growth and Cox-2 expression in prostatic cancer cells. Cell Biol. Int. 25, 1117–1124 (2001).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    DiPaola, R. S. et al. Clinical and biologic activity of an estrogenic herbal combination (PC-SPES) in prostate cancer. N. Engl. J. Med. 339, 785–791 (1998).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    de la Taille, A. et al. Herbal therapy PC-SPES: in vitro effects and evaluation of its efficacy in 69 patients with prostate cancer. J. Urol. 164, 1229–1234 (2000).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Small, E. J. et al. Prospective trial of the herbal supplement PC-SPES in patients with progressive prostate cancer. J. Clin. Oncol. 18, 3595–3603 (2000).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Small, E. J. et al. A prospective multicenter randomized trial of the herbal supplement, PC-SPES vs. diethylstilbestrol (DES) in patients with advanced, androgen independent prostate cancer (AiPCa). Am. Soc. Clin. Oncol. A709 (2002).

  81. 81

    White, J. PC-SPES: a lesson for future dietary supplement research. J. Natl Cancer Inst. 94, 1261–1263 (2002).

    PubMed  Article  Google Scholar 

  82. 82

    Weinrobe, M. C. & Montgomery, B. Acquired bleeding diathesis in a patient taking PC-SPES. N. Engl. J. Med. 345, 1213–1214 (2001).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Feifer, A. H., Fleshner, N. E. & Klotz, L. Analytical accuracy and reliability of commonly used nutritional supplements in prostate disease. J. Urol. 168, 150–154 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Chan, T. Y., Chan, J. C., Tomlinson, B. & Critchley, J. A. Chinese herbal medicines revisited: a Hong Kong perspective. Lancet 342, 1532–1534 (1993).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Huang, W. F., Wen, K. C. & Hsiao, M. L. Adulteration by synthetic therapeutic substances of traditional Chinese medicines in Taiwan. J. Clin. Pharmacol. 37, 344–350 (1997).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Ko, R. J. Adulterants in Asian patent medicines. N. Engl. J. Med. 339, 847 (1998).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Mansky, P. J. & Straus, S. E. St. John's Wort: more implications for cancer patients. J. Natl Cancer Inst. 94, 1187–1188 (2002).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Cassileth, B. & Lucarelli, C. Herb–Drug Interactions in Oncology (B. C. Decker, Hamilton, 2003).

    Google Scholar 

  89. 89

    Bonham, M. J. et al. Effects of the herbal extract PC-SPES on microtubule dynamics and paclitaxel-mediated prostate tumor growth inhibition. J. Natl Cancer Inst. 94, 1641–1647 (2002). This study shows that PC-SPES has effects on microtubule dynamics in prostate cancer that are independent of potential DES contamination and that antagonize the effect of microtubule-stabilizing agents, implying that PC-SPES might antagonize chemotherapy for advanced disease.

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Nelson, W. G., De Marzo, A. M. & Isaacs, W. B. Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Hayes, R. B. et al. Sexual behaviour, STDs and risks for prostate cancer. Br. J. Cancer 82, 718–725 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Habel, L. A., Zhao, W. & Stanford, J. L. Daily aspirin use and prostate cancer risk in a large, multiracial cohort in the US. Cancer Causes Control 13, 427–434 (2002).

    PubMed  Article  Google Scholar 

  93. 93

    De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, and the prevention of cancer: a global perspective. (American Institute for Cancer Research, Washington DC, 1997).

  95. 95

    Kolonel, L. N., Hankin, J. H. & Yoshizawa, C. N. Vitamin A and prostate cancer in elderly men: enhancement of risk. Cancer Res. 47, 2982–2985 (1987).

    CAS  PubMed  Google Scholar 

  96. 96

    Gann, P. H. et al. Circulating vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 5, 121–126 (1996).

    CAS  PubMed  Google Scholar 

  97. 97

    Chan, J. M. et al. Dairy products, calcium, and prostate cancer risk in the Physicians' Health Study. Am. J. Clin. Nutr. 74, 549–554 (2001).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    West, D. W., Slattery, M. L., Robison, L. M., French, T. K. & Mahoney, A. W. Adult dietary intake and prostate cancer risk in Utah: a case–control study with special emphasis on aggressive tumors. Cancer Causes Control 2, 85–94 (1991).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Yoshizawa, K. et al. Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J. Natl Cancer Inst. 90, 1219–1224 (1998).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Key, T. J., Silcocks, P. B., Davey, G. K., Appleby, P. N. & Bishop, D. T. A case–control study of diet and prostate cancer. Br. J. Cancer 76, 678–687 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Oishi, K. et al. A case–control study of prostatic cancer with reference to dietary habits. Prostate 12, 179–190 (1988).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Jain, M. G., Hislop, G. T., Howe, G. R. & Ghadirian, P. Plant foods, antioxidants, and prostate cancer risk: findings from case–control studies in Canada. Nutr. Cancer 34, 173–184 (1999).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Hebert, J. R. et al. Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. J. Natl Cancer Inst. 90, 1637–1647 (1998).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Ellison, L. F. Tea and other beverage consumption and prostate cancer risk: a Canadian retrospective cohort study. Eur. J. Cancer Prev. 9, 125–130 (2000).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Poisson, B. A. et al. Pharmacokinetic analysis of the putative prostate cancer chemopreventive agent, genistein. Proc.Am. Soc. Clin. Oncol. A334 (2001).

  106. 106

    Hennekens, C. H. et al. Lack of effect of long-term supplementation with β carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 334, 1145–1149 (1996).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Association for the Cure of Cancer of the Prostate (CaPURE) for support. Peter Nelson is supported by a Scholar Award from the Damon Runyan Cancer Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter S. Nelson.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

endometrial cancer

lung cancer

non-melanoma skin cancer

prostate cancer

LocusLink

cyclin D

FURTHER INFORMATION

ClinicalTrials.gov

Glossary

TOCOPHEROLS AND TOCOTRIENOLS

Tocopherols are substituted benzopyranols (methyl tocols) that occur in vegetable oils. Different forms (α, β, γ and δ) are recognized according to the number or position of methyl groups on the aromatic ring. α-tocopherol is an important natural antioxidant. Tocotrienols have similar ring structures as tocopherols, but have three double bonds in the aliphatic chain.

POLYPHENOLS

Chemicals that contain more than one aromatic phenol ring.

PHYTO-OESTROGENS

Chemicals that are derived from plant sources which have oestrogen-like effects on animal tissues or cell lines.

METALLOPROTEINASES

Proteolytic enzymes that break down the extracellular matrix.

TRAMP MICE

(Transgenic adenocarcinoma of the mouse prostate). A transgenic mouse strain in which the oncogenic SV40 T antigen is expressed in prostate tissue. Animals spontaneously develop preneoplastic lesions and malignancy of the prostate and the model has been used to study methods to prevent and treat prostate cancer in vivo.

PSA

(Prostate-specific antigen). A member of the kallikrein family that is made by normal and malignant prostate tissues and that can be secreted into the blood. Detection of PSA from blood tests is one way of detecting and following prostate cancer.

EICOSANOIDS

A class of hormone-like substances that are formed in the body from long-chain essential fatty acids.

SCID MICE

Mice that are homozygous for the SCID mutation have compromised B- and T-cell immunity. This lack of immunity means that they can support human tumour xenografts for preclinical studies.

CAROTENOIDS

Any group of pigments, yellow to deep red in colour, chemically consisting of polyisoprene hydrocarbons. Carotenoids are synthesized by higher plants and concentrate in animal fat when eaten.

REACTIVE OXYGEN SPECIES

The chemical reactions and physical changes involving molecular oxygen (O2), or any of the reactive oxygen species such as superoxide anions (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (–OH).

OLEORESIN

A mixture of oil and resin that occurs naturally in certain plant tissues, and that can be extracted.

SAW-PALMETTO

A small berry-shaped fruit that grows on the Saw palmetto palm tree (known as sabal in Europe). Saw palmetto grows naturally in the southeast United States (for example, in Georgia, Mississippi and Florida) and has been used for thousands of years by the Native Americans to treat urinary problems.

HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

A method that is used to separate molecules through the use of high-pressure application of complex solutions to matrices that preferentially bind or exclude species depending on the matrix and the compound of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nelson, P., Montgomery, B. Unconventional therapy for prostate cancer: good, bad or questionable?. Nat Rev Cancer 3, 845–858 (2003). https://doi.org/10.1038/nrc1210

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing