Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms

Key Points

  • Colorectal cancer is one of the main causes of cancer mortality in Western societies.

  • Experimental, epidemiological and clinical evidence show that diets consumed by Western populations have an important role in the modulation of this disease.

  • Calcium, vitamin D and folate have emerged as promising chemopreventive agents in colon cancer.

  • One of the main pathways used by extracellular calcium to exert its chemopreventive actions is through activation of a calcium-sensing receptor. This results in increased levels of intracellular calcium, inducing a wide range of biological effects, some of which restrain the growth and promote the differentiation of transformed colon cells.

  • Most of the pleiotropic actions of vitamin D are mediated by binding to a nuclear receptor, which interacts with specific consensus sites in promoters of specific genes, resulting in downregulation or upregulation of their expression. The actions of vitamin D involve cross-talk with growth factors/cytokines, inhibitory effects on the cell cycle and stimulation of apoptosis.

  • Folate lies at the intersection of metabolic pathways involved in DNA methylation and biosynthesis. Three main mechanisms by which decreased levels of folate (and of other dietary one-carbon donors) might increase the risk of cancer are: alteration of the normal DNA-methylation process; imbalance of the steady-state level of DNA precursors, leading to aberrant DNA synthesis and repair; and chromosome and chromatin changes.

  • It is proposed that, together with the application of genome methodology to elucidate nutrient–gene interactions, a deliberate effort should be made to identify nutrient-induced key events in signal-transduction pathways and in the cell cycle that are involved either in the chemoprevention or promotion of colorectal cancer.


Recent findings have indicated that dietary calcium, vitamin D and folate can modulate and inhibit colon carcinogenesis. Supporting evidence has been obtained from a wide variety of preclinical experimental studies, epidemiological findings and a few human clinical trials. Important molecular events and cellular actions of these micronutrients that contribute to their tumour-modulating effects are discussed. They include a complex series of signalling events that affect the structural and functional organization of colon cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A signalling pathway of extracellular calcium.
Figure 2: Biosynthesis, and genomic and non-genomic actions of vitamin D.
Figure 3: Inhibitory action of vitamin D on the cell cycle.
Figure 4: Pro-apoptotic actions of vitamin D.
Figure 5: Decreased dietary folate intake and colon carcinogenesis.


  1. 1

    Potter, J. D. Colorectal cancer: molecules and populations. J. Natl Cancer Inst. 91, 916–932 (1999).

    CAS  PubMed  Google Scholar 

  2. 2

    KInzler, K. W. & Vogelstein, B. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 583–612 (McGraw-Hill, New York, 2001).

    Google Scholar 

  3. 3

    Lipkin, M., Reddy, B., Newmark, H. & Lamprecht, S. A. Dietary factors in human colorectal cancer. Annu. Rev. Nutr. 19, 545–586 (1999).

    CAS  PubMed  Google Scholar 

  4. 4

    Milner, J. A., McDonald, S. S., Anderson, D. E. & Greenwald, P. Molecular targets for nutrients involved with cancer prevention. Nutr. Cancer 41, 1–16 (2001).

    CAS  PubMed  Google Scholar 

  5. 5

    Holt, P. R., Wolper, C., Moss, S. F., Yang, K. & Lipkin, M. Comparison of calcium supplementation or low-fat dairy foods on epithelial-cell proliferation and differentiation. Nutr. Cancer 41, 150–155 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Giovannucci, E. Epidemiologic studies of folate and colorectal neoplasia. J. Nutr. 132, 2350S–2355S (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    Choi, S. -W. & Mason, J. B. Folate status: effects on pathways of colorectal carcinogenesis. J. Nutr. 132, 2413S–2418S (2002). An incisive and comprehensive review that discusses folate modulation of colon carcinogenesis.

    CAS  PubMed  Google Scholar 

  8. 8

    Mason, J. B. Nutritional chemoprevention of colon cancer. Semin. Gastrointest. Dis. 13, 143–153 (2002).

    PubMed  Google Scholar 

  9. 9

    Lipkin, M. et al. Preclinical mouse models for cancer chemoprevention studies. Ann. NY Acad. Sci. 889, 14–19 (1999).

    CAS  PubMed  Google Scholar 

  10. 10

    Risio, M. et al. Apoptosis, cell replication, and Western-style diet-induced tumorigenesis in mouse colon. Cancer Res. 56, 4910–4916 (1996).

    CAS  PubMed  Google Scholar 

  11. 11

    Newmark, H. L. et al. A western-style diet induces benign and malignant neoplasms in the colon of normal C57BL/6 mice. Carcinogenesis 22, 1871–1875 (2001). This study shows that a Western-style diet with decreased calcium, vitamin D and one-carbon donors induces colon neoplasms in normal mice without carcinogen exposure.

    CAS  PubMed  Google Scholar 

  12. 12

    Berridge, M. J., Bootman, M. J. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    CAS  Google Scholar 

  13. 13

    Cullen, P. J. & Lockyer, P. L. Integration of calcium and ras signalling. Nature Rev. Mol. Cell Biol. 3, 339–348 (2002).

    CAS  Google Scholar 

  14. 14

    Lamprecht, S. A. & Lipkin, M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. . Ann. NY Acad. Sci. 952, 73–85 (2001).

    CAS  PubMed  Google Scholar 

  15. 15

    Newmark, H., Wargowich, M. J. & Bruce, W. R. Colon cancer and dietary fat, phosphate and calcium: a hypothesis. J. Natl Cancer Inst. 72, 1323–1325 (1984).

    CAS  PubMed  Google Scholar 

  16. 16

    Barritt, G. J. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signaling requirements. J. Biochem. 337, 153–169 (1999).

    CAS  Google Scholar 

  17. 17

    Taylor, C. W. Controlling calcium entry. Cell 111, 767–769 (2002).

    CAS  PubMed  Google Scholar 

  18. 18

    Brown, E. M. & MacLeod, R. J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81, 239–297 (2001). An excellent review of the calcium-sensing receptor (CaR) and extracellular calcium signalling in cells of different lineages.

    CAS  PubMed  Google Scholar 

  19. 19

    Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993). This study describes the first cloning of CaR.

    CAS  PubMed  Google Scholar 

  20. 20

    Pazianas, M. et al. Extracellular cation sensing by the enterocyte: prediction of a novel divalent cation 'receptor'. Biochem. Biophys. Res. Commun. 210, 948–953 (1995).

    CAS  PubMed  Google Scholar 

  21. 21

    Gama, L., Baxendale-Cox, L. M. & Breitwieser, G. E. Ca2+-sensing receptors in intestinal epithelium. Am. J. Physiol. 273, C1168–C1175 (1997).

    CAS  PubMed  Google Scholar 

  22. 22

    Chattopadhyay, N. et al. Identification and localization of extracellular Ca2+-sensing receptor in rat intestine. Am. J. Physiol. 274, G122–G130 (1998).

    CAS  PubMed  Google Scholar 

  23. 23

    Mitsuma, T. et al. Distribution of calcium sensing receptor in rats: an immunohistochemical study. Endocrin. Rev. 33, 55–59 (1999).

    CAS  Google Scholar 

  24. 24

    Cheng, S. X., Okuda, M., Hall, A. E., Geibel, J. P. & Hebert, S. C. Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am. J. Physiol. 283, G240–G250 (2002).

    CAS  Google Scholar 

  25. 25

    Buchan, A. M., Squires, P. E., Ring, M. & Meloche, R. M. Mechanism of action of the calcium-sensing receptor in human antral gastrin cells. Gastroenterology 120, 1128–1139 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Kallay, E. et al. Calcium-dependent c-myc proto-oncogene expression and proliferation of CACO-2 cells: a role for a luminal extracellular calcium-sensing receptor. Biochem. Biophys. Res. Commun. 232, 80–83 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Sheinin, Y. et al. Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J. Histochem. Cytochem. 48, 595–602 (2000).

    CAS  PubMed  Google Scholar 

  28. 28

    Kallay, E. et al. Dietary calcium and growth modulation of human colon cancer cells: role of the extracellular calcium-sensing receptor. Cancer Detect. Prev. 24, 127–136 (2000).

    CAS  PubMed  Google Scholar 

  29. 29

    Chakrabarty, S., Radjendirane, V., Appelman, H. & Varani, J. Extracellular calcium and calcium-sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Res. 63, 67–71 (2003). An interesting paper presenting evidence for the involvement of extracellular calcium and CaR in promoting the differentiation of colon cells and in suppressing β-catenin activation, which is a prominent signalling pathway involved in colon carcinogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Saxon, M. L., Zhao, X. & Black, J. D. Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ. J. Cell Biol. 126, 747–763 (1994).

    CAS  PubMed  Google Scholar 

  31. 31

    Frey, M. R. et al. Protein kinase C signaling mediates a program of cell cycle withdrawal in the intestinal epithelium. J. Cell Biol. 151, 763–777 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Verstovsek, G., Byrd, A., Frey, M. R., Petrelli, N. J. & Black, J. D. Colonocyte differentiation is associated with increased expression and altered distribution of protein kinase C isozymes. Gastroenterology 115, 75–85 (1998).

    CAS  PubMed  Google Scholar 

  33. 33

    Guillem, J. G. et al. Altered levels of protein kinase C and Ca2+-dependent protein kinases in human colon carcinomas. Cancer Res. 47, 2036–2039 (1987).

    CAS  PubMed  Google Scholar 

  34. 34

    Kopp, R. et al. Altered protein kinase C activity in biopsies of human colonic adenomas and carcinomas. Cancer Res. 51, 205–210 (1991).

    CAS  PubMed  Google Scholar 

  35. 35

    Cowell, H. E. & Garrod, D. R. Activation of protein kinase C modulates cell–cell and cell–substratum adhesion of a human colorectal carcinoma cell line and restores 'normal' epithelial morphology. Int. J. Cancer 80, 455–464 (1999).

    CAS  PubMed  Google Scholar 

  36. 36

    Abraham, C. et al. Protein kinase Cα modulates growth and differentiation in Caco-2 cells. Gastroenterology 114, 503–509 (1998).

    CAS  PubMed  Google Scholar 

  37. 37

    Scaglione-Sewell, B. et al. Decreased PKC-α expression increases cellular proliferation, decreases differentiation, and enhances the transformed phenotype of CaCo-2 cells. Cancer Res. 58, 1074–1081 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Klein, I. K. et al. Adenoma-specific alterations of protein kinase C isozyme expression in Apc min mice. Cancer Res. 60, 2077–2080 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Black, J. D. Protein kinase C isozymes in colon carcinogenesis: guilt by omission. Gastroenterology 120, 1868–1872 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Whitfield, J. F. Calcium signals and cancer. Crit. Rev. Oncog. 3, 55–90 (1992). An incisive review of calcium, which is aptly defined as 'the great signaller', at the heart of proliferation, differentiation and cancer.

    CAS  PubMed  Google Scholar 

  41. 41

    Buras, R. R. et al. The effect of extracellular calcium on colonocytes: evidence for differential responsiveness based upon degree of cell differentiation. Cell Prolif. 28, 245–262 (1995).

    CAS  PubMed  Google Scholar 

  42. 42

    Brenner, B. M., Russell, N., Albrecht, S. & Davies, R. J. The effect of dietary vitamin D3 on the intracellular calcium gradient in mammalian colonic crypts. Cancer Lett. 127, 43–53 (1998).

    CAS  PubMed  Google Scholar 

  43. 43

    Frey, M. R. et al. Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21WAF1/CIP1 and p27KIP1 and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J. Biol. Chem. 272, 9424–9435 (1997).

    CAS  PubMed  Google Scholar 

  44. 44

    Quaroni, A., Tian, J. Q., Seth, P. & Ap Rhys C., p27(Kip1) is an inducer of intestinal epithelial cell differentiation. Am. J. Physiol. 279, C1045–C1057 (2000).

    CAS  Google Scholar 

  45. 45

    Deschenes, C., Vezina, A., Beaulieu, J. -F. & Rivard, N. Role of p27kip1 in human intestinal cell differentiation. Gastroenterology 120, 423–438 (2001).

    CAS  PubMed  Google Scholar 

  46. 46

    El-Diery, W. S. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55, 2910–2919 (1995).

    Google Scholar 

  47. 47

    Polyak, K., Hamiton, S. R., Vogelstein, B. & Kinzler, K. W. Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia. Am. J. Pathol. 149, 381–387 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Yang, W. C. et al. Targeted inactivation of the p21WAF1/CIP1 gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a western-style high-risk diet by altering cell maturation in the intestinal mucosa. Cancer Res. 61, 565–569 (2001). This incisive study describes the intestinal tumour-promoting effect of a Western-style diet in knockout mice deficient in Waf1, which is an important 'guardian' of the cell cycle.

    CAS  PubMed  Google Scholar 

  49. 49

    McNeil, S. E., Hobson, S. A., Nipper, V. & Rodland, K. D. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J. Biol. Chem. 273, 1114–1120 (1998).

    CAS  PubMed  Google Scholar 

  50. 50

    Kifor, O. et al. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am. J. Physiol. 280, F291–F302 (2001).

    CAS  Google Scholar 

  51. 51

    Houde, M. et al. Intestinal epithelial cell differentiation involves activation of p38 mitogen-activated protein kinase that regulates the homeobox transcription factor CDX2. J. Biol. Chem. 276, 21885–21894 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Lorentz, O. et al. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J. Cell Biol. 139, 1553–1565 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Gianani, R. et al. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum. Pathol. 32, 119–125 (2001).

    CAS  PubMed  Google Scholar 

  54. 54

    Gelebart, P. et al. Expression of endomembrane calcium pumps in colon and gastric cancer cells. J. Biol. Chem. 277, 26310–26320 (2002). An interesting paper showing that expression of SERCA3 is lost in colon cancer cells, in agreement with the observation that SERCAs have a determining role in cell differentiation.

    CAS  PubMed  Google Scholar 

  55. 55

    Hajnoczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 304, 445–454 (2003).

    CAS  PubMed  Google Scholar 

  56. 56

    Penham, I. D., Liang, R. L., Bode, J., Eastwood, M. D. & Arends, M. J. Dietary calcium supplementation increases apoptosis in the distal murine colonic epithelium. J. Clin. Pathol. 53, 302–307 (2000).

    Google Scholar 

  57. 57

    Hardungham, G. E., Chawia, S., Johnston, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Google Scholar 

  58. 58

    Studzinski, G. P., McLane, H. A. & Uskokovic, M. R. Signaling pathways for vitamin-D-induced differentiation: implications for therapy of proliferative and neoplastic diseases. Crit. Rev. Eukaryot. Gene Expr. 3, 279–312 (1993).

    CAS  PubMed  Google Scholar 

  59. 59

    Ylikomi, T. et al. Antiproliferative action of vitamin D. Vitam. Horm. 64, 357–405 (2002).

    CAS  PubMed  Google Scholar 

  60. 60

    Haussler, M. R. et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Metab. 13, 325–349 (1998).

    CAS  Google Scholar 

  61. 61

    Pike, J. W. in Vitamin D (eds Feldman, F., Glorieux, F. H. & Pike, J. W.) 105–125 (Academic Press, New York, 1997).

    Google Scholar 

  62. 62

    Sutton, A. M. L. & Macdonald, P. N. Vitamin D: more than a 'bona-a–fide' hormone. Mol. Endocrinol. 17, 777–791 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Lointier, P. et al. Specific receptor for 1,25 dihydroxyvitamin D3 (1,25 DR) and human colorectal carcinogenesis. Anticancer Res. 9, 1921–1924 (1989).

    CAS  PubMed  Google Scholar 

  64. 64

    Lointier, P. et al. 1,25 dihydroxyvitamin D3 receptors and human colon adenocarcinoma. Br. J. Surg. 78, 435–439 (1991).

    CAS  PubMed  Google Scholar 

  65. 65

    Meggouh, F., Lointier, P. & Saez, S. Sex steroid and 1,25 dihydroxyvitamin D3 receptors in human colorectal adenocarcinoma and normal mucosa. Cancer Res. 51, 1227–1233 (1991).

    CAS  PubMed  Google Scholar 

  66. 66

    Frampton, R. J. et al. Presence of 1, 25 dihydroxyvitamin D3 receptors in established human cancer cell lines in culture. Cancer Res. 42, 1116–1119 (1982).

    CAS  PubMed  Google Scholar 

  67. 67

    Brehier, A. & Thomasset, M. Human colon cell line HT-29 characterization of 1,25 dihydroxyvitamin D3 receptor and induction of differentiation by the hormone. J. Steroid Biochem. 29, 265–270 (1988).

    CAS  PubMed  Google Scholar 

  68. 68

    Shabahang, M. et al. 1,25 dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res. 53, 3712–3718 (1993).

    CAS  PubMed  Google Scholar 

  69. 69

    Sheinin, Y. et al. In situ mRNA hybridization analysis and immunolocalization of the vitamin D receptor in normal and carcinomatous human colonic mucosa: relation to epidermal growth factor expression. Virch. Arch. 437, 501–507 (2000).

    CAS  Google Scholar 

  70. 70

    Cross, H. S. et al. 25-hydroxyvitamin D3-1α-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids 66, 287–292 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Belleli, A., Shany, S., Levy, J., Guberman, R. & Lamprecht, S. A. A protective role of 1,25 dihydroxyvitamin D3 in chemically induced rat colon carcinogenesis. Carcinogenesis 13, 2293–2298 (1992).

    CAS  PubMed  Google Scholar 

  72. 72

    Minghetti, P. P. & Norman, A. W. 1,25 (OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J. 2, 3043–3053 (1988).

    CAS  PubMed  Google Scholar 

  73. 73

    Yanagisawa, J. et al. Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283, 1317–1321 (1999). An elegant paper showing the cross-talk between vitamin D and the TGF-β signalling pathway.

    CAS  Google Scholar 

  74. 74

    Canaff, L. & Hendy, G. N. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J. Biol. Chem. 277, 30337–30350 (2002). An interesting publication reporting that CaR is transcriptionally regulated by vitamin D.

    CAS  PubMed  Google Scholar 

  75. 75

    Auvinen, M. et al. Transcriptional regulation of ornithine decarboxylase by c-Myc/Max/Mad network and retinoblastoma protein interacting with c-Myc. Int J Biochem Cell Biol. 35, 496–521 (2003).

    CAS  PubMed  Google Scholar 

  76. 76

    Jacoby, R. F et al. Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc-mutant Min mouse adenomas, and selective toxicity against Apc-mutant embryos. Cancer Res. 60, 1864–1870 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002). This work describes how the vitamin-D receptor 'senses' the presence of lithocholic acid, a potential pro-carcinogenic bile acid, and detoxifies it.

    CAS  Google Scholar 

  78. 78

    Thummel, K. E. et al. Transcriptional control of intestinal cytochrome P4503A by 1α,25-dihydroxy vitamin D3. Mol. Pharmacol. 60, 1399–1406 (2001).

    CAS  PubMed  Google Scholar 

  79. 79

    Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem. 127, 717–722 (2000).

    CAS  PubMed  Google Scholar 

  80. 80

    Kallay, E. et al. Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. Carcinogenesis 22, 1429–1435 (2001). These findings emphasize the importance of the vitamin-D receptor in protecting the colon mucosa against carcinogenesis.

    CAS  PubMed  Google Scholar 

  81. 81

    Norman, A. W., Okamura, W. H., Bishop, J. E. & Henry, H. L. Update on the biological actions of 1α, 25 (OH)2-vitamn D3 (rapid effects) and 24R,25 (OH)2-vitamin D3 . Mol. Cell. Endocrinol. 197, 1–13 (2002).

    CAS  PubMed  Google Scholar 

  82. 82

    Norman, A. W., Olivera, C. J., Barreto Silva F. R. M. & Bishop, J. E. A specific binding protein/receptor for 1α,25-dihydroxyvitamin D3 is present in an intestinal caveolae membrane fraction. Biochem. Biophys. Res. Commun. 298, 414–419 (2002).

    CAS  PubMed  Google Scholar 

  83. 83

    Lieberherr, M., Grosse, B., Duchambon, P. & Drueke, T. A functional cell-surface type receptor is required for the early action of 1,25-dihydroxyvitamin D on the phosphoinositide metabolism in rat enterocytes. J. Biol. Chem. 264, 20403–20406 (1989).

    CAS  PubMed  Google Scholar 

  84. 84

    Kim, K. E. & Brasitus, T. A. The role of vitamin D in normal and pathologic processes in the colon. Curr. Opin. Gastroenterol. 17, 72–77 (2001).

    PubMed  Google Scholar 

  85. 85

    Erben, R. G. et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol. Endocrinol. 16, 1524–1537 (2002).

    CAS  PubMed  Google Scholar 

  86. 86

    Gurlek, A., Pittelkow, M. R. & Kumar, R. Modulation of growth factor/cytokine synthesis and signaling by 1α,25-dihydroxyvitamin D3: implications in cell growth and differentiation. Endocrine Rev. 23, 763–786 (2002).

    CAS  Google Scholar 

  87. 87

    Wu, Y., Craig, T. A., Lutz, W. H. & Kumar, R. Identification of 1α, 25-dihydroxyvitamin D3 response elements in the human transforming growth factor β2 gene. Biochemistry 38, 2654–2660 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Yanagi, Y. et al. Positive and negative modulation of vitamin D receptor function by transforming growth factor-β signaling through Smad proteins. J. Biol. Chem. 274, 12971–12974 (1999).

    CAS  PubMed  Google Scholar 

  89. 89

    Chen, A., Davis, B. H., Sitrin, M. D., Brasitus, T. A. & Bissonette, M. Transforming growth factor-β1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25 (OH)2D3 . Am. J. Physiol. 283, G864–G874 (2002).

    CAS  Google Scholar 

  90. 90

    Scaglione-Sewell, B. A. et al. A vitamin D3 analog induces a G1-phase arrest in CaCo-2 cells by inhibiting Cdk2 and Cdk6: roles of cyclin E, p21Waf1 and p27Kip1. Endocrinology 141, 3931–3939 (2000).

    CAS  PubMed  Google Scholar 

  91. 91

    Skjode Jensen, S., Winkel Madsen, M., Lukas, J., Binderup, L. & Bartek, J. Inhibitory effects of 1,25-dihydroxyvitamin D3 on the G1–S phase-controlling machinery. Mol. Endocrinol. 15, 1370–1380 (2001).

    PubMed  Google Scholar 

  92. 92

    Arber, N. et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110, 669–674 (1996).

    CAS  PubMed  Google Scholar 

  93. 93

    Zhang, T. et al. Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57, 169–175 (1997).

    CAS  PubMed  Google Scholar 

  94. 94

    Shinozaki, H. et al. Cyclin D1 expression in the intestinal mucosa and tumors of Apc1638N mice. Anticancer Res. (in the press).

  95. 95

    Palmer, H. G et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154, 369–388 (2001). Convincing data showing that the differentiation-inducing action of vitamin D depends, at least partly, on the inhibition of inappropriate β-catenin expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Vandewalle, B., Wattez, N. & Lefebvre, J. Effects of vitamin D3 derivatives on growth, differentiation and apoptosis in tumoral colonic HT-29 cells: possible implication of intracellular calcium. Cancer Lett. 97, 99–106 (1995).

    CAS  PubMed  Google Scholar 

  97. 97

    Diaz, G. D., Paraskeva, C., Thomas, M. G., Binderup, L. & Hague, A. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res. 60, 2304–2312 (2000).

    CAS  PubMed  Google Scholar 

  98. 98

    Guzey, M., Kitada, S. & Reed, J. C. Apoptosis induction by 1α,25-dihydroxyvitamin D3 in prostate cancer. Mol. Cancer Ther. 1, 667–677 (2002).

    CAS  PubMed  Google Scholar 

  99. 99

    Potter, J. D. Methyl supply, methyl metabolizing enzymes and colorectal neoplasia. J. Nutr. 132, 2410S–2412S (2002).

    CAS  PubMed  Google Scholar 

  100. 100

    Choi, S. -W. & Mason, J. B. Folate and carcinogenesis: an integrated scheme. J. Nutr. 130, 129–132 (2000).

    CAS  PubMed  Google Scholar 

  101. 101

    Jubb, A. M., Bell, S. M. & Quirke, P. Methylation and colorectal cancer. J. Pathol. 195, 111–134 (2001).

    CAS  PubMed  Google Scholar 

  102. 102

    Robertson, K. D. & Wolffe, A. P. DNA methylation in health and disease. Nature Rev. Genet. 1, 11–19 (2000).

    CAS  Google Scholar 

  103. 103

    Duthie, S. J., Narayanan, S., Brand, G. M., Pirie, L. & Grant, G. Impact of folate deficiency on DNA stability. J. Nutr. 132, 2444S–2449S (2002).

    CAS  PubMed  Google Scholar 

  104. 104

    Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    CAS  Google Scholar 

  105. 105

    Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. -P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    CAS  Google Scholar 

  106. 106

    Costello, J. F. & Plass, C. Methylation matters. J. Med. Genet. 38, 285–303 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Fruhwald, M. C. & Plass, C. Global and gene-specific methylation patterns in cancer: aspects of tumor biology and clinical potential. Mol. Genet. Metab. 75, 1–16 (2002).

    PubMed  Google Scholar 

  108. 108

    Esteller, M. & Herman, J. G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. 196, 1–7 (2002).

    CAS  PubMed  Google Scholar 

  109. 109

    Bariol, C. et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am. J. Pathol. 162, 1361–1371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Feinberg, A. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 111, 47–54 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Brown, T. A. Genomes (Wiley–Liss, USA, 1999).

    Google Scholar 

  112. 112

    Chen, R. Z., Petterson, V., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93 (1998).

    CAS  PubMed  Google Scholar 

  113. 113

    Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003). References 112 and 113 provide solid evidence that DNA hypomethylation results in increased mutation rates, chromosome instability and neoplasia.

    CAS  PubMed  Google Scholar 

  114. 114

    Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002). Interesting results that indicate redundancy of DNA methyltransferases in human cells.

    CAS  PubMed  Google Scholar 

  115. 115

    Blount, B. C. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl Acad. Sci. USA 94, 3290–3295 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Choi, S. -W., Kim, Y. -I., Weitzel, J. N. & Mason, J. B. Folate depletion impairs DNA excision repair in the colon of the rat. Gut 43, 93–99 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Cravo, M. L. et al. Microsatellite instability in non-neoplastic mucosa of patients with ulcerative colitis: effect of folate supplementation. Am. J. Gastroenterol. 93, 2060–2064 (1998).

    CAS  PubMed  Google Scholar 

  118. 118

    Duthie, S. J., Narayanan, S., Blum, S., Pirie, L. & Brand, G. M. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excition repair in immortalized normal human colon epithelial cells. Nutr. Cancer 37, 245–251 (2000).

    CAS  PubMed  Google Scholar 

  119. 119

    Nensey, Y. M., Arlow, F. L. & Majumdar, A. P. N. Aging increased responsiveness of colorectal mucosa to carcinogen stimulation and protective role of folic acid. Dig. Dis. Sci. 40, 396–401 (1995).

    CAS  PubMed  Google Scholar 

  120. 120

    Biasco, G. et al. Folic acid supplementation and cell kinetics of rectal mucosa in patients with ulcerative colitis. Cancer Epidemiol. Biomark. Prev. 6, 469–471 (1997).

    CAS  Google Scholar 

  121. 121

    Khosraviani, K., Weir, H. P., Hamilton, P., Moorehead, J. & Williamson, K. Effect of folate supplementation on mucosal cell proliferation in high-risk patients for colon cancer. Gut 51, 195–199 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Lamprecht, S. A. & Lipkin, M. Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis 23, 1777–1780 (2002).

    CAS  PubMed  Google Scholar 

  123. 123

    Jaszewski, R. et al. Folic acid inhibition of EGFR-mediated proliferation in human colon cancer cell lines. Am. J. Physiol. 277, C1142–C1148 (1999).

    CAS  PubMed  Google Scholar 

  124. 124

    Song, J., Medline, A., Mason, J. B., Gallinger, S. & Kim, Y. -I. Effects of dietary folate on intestinal tumorigenesis in the Apc Min mouse. Cancer Res. 60, 5434–5440 (2000).

    CAS  PubMed  Google Scholar 

  125. 125

    Song, J., Sohn, K. -J., Medline, A., Ash, C., Gallinger, S. & Kim, Y. -I. Chemopreventive effects of dietary folate on intestinal polyps in Apc+/−Msh2−/− mice. Cancer Res. 60, 3191–3199 (2000).

    CAS  PubMed  Google Scholar 

  126. 126

    Kim, Y. -I. et al. Exon-specific DNA hypomethylation of the p53 gene of the rat colon induced by dietary folate. Modulation by dietary folate. Am. J. Pathol. 149, 1129–1137 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Kim, Y. -I. et al. Effects of dietary folate on DNA strand breaks within mutation-prone exons of the p53 gene in rat colon. Gastroenterology 119, 151–161 (2000).

    CAS  PubMed  Google Scholar 

  128. 128

    Sohn, K. -J. et al. The effect of dietary folate on genomic and p53-specific DNA methylation in rat colon. Carcinogenesis 24, 81–90 (2003).

    CAS  PubMed  Google Scholar 

  129. 129

    Le Leu R. K., Young, G. P. & Mcintosh, G. H. Folate deficiency reduces the development of colorectal cancer in rats. Carcinogenesis 21, 2261–2265 (2000).

    CAS  PubMed  Google Scholar 

  130. 130

    Lu, S., Hoestje, S. M., Choo, E. & Epner, D. E. Induction of caspase-dependent and -independent apoptosis in response to methionine restriction. Int. J. Oncol. 22, 415–420 (2003).

    CAS  PubMed  Google Scholar 

  131. 131

    Fuchs, C. S. et al. The influence of folate and multivitamin use on the familial risk of colon cancer in women. Cancer Epidemiol. Biomark. Prev. 11, 227–234 (2002).

    CAS  Google Scholar 

  132. 132

    Konings, E. J. M., Goldbohm, R. A., Brants, H. A., Saris, W. H. & van den Brandt, P. A. Intake of dietary folate vitamers and risk of colorectal carcinoma: results from The Netherlands Cohort Study. Cancer 85, 1421–1433 (2002).

    Google Scholar 

  133. 133

    Pufulete, M. et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenomas and cancer: a case control study. Gastroenterology 124, 1240–1248 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Ma, J. et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57, 1098–1102 (1997). The first paper to report that folate-replete individuals homozygous for a common polymorphic variant of MTHFR have half the risk of colon cancer compared with either the wild-type or heterozygous phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Kim, Y. -I. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene–nutrient interactions in carcinogenesis. Nutr. Rev. 58, 205–209 (2000).

    CAS  PubMed  Google Scholar 

  136. 136

    Chen, J. et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56, 4862–4864 (1996).

    CAS  Google Scholar 

  137. 137

    Cravo, M. L. et al. DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur. J. Cancer Prev. 3, 473–479 (1994).

    CAS  PubMed  Google Scholar 

  138. 138

    Lashner, B. A., Provencher, K. A., Seidner, D. L., Knesebeck, A. & Brzezinski, A. The effect of folic acid supplementation on the risk for cancer or dysplasia in ulcerative colitis. Gastroenterology 112, 29–32 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Lashner, B. A., Heidenreich, P. A., Su, G. L., Kane, S. V. & Hanauer, S. B. Effect of folate supplementation on the incidence of dysplasia and cancer in chronic ulcerative colitis. A case control study. Gastroenterology 97, 255–259 (1989).

    CAS  PubMed  Google Scholar 

  140. 140

    Gupta, R. A. & DuBois, R. N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Rev. Cancer 1, 11–21 (2001).

    CAS  Google Scholar 

  141. 141

    Bai, M., Trivedi, S., Lane, C. R., Quinn, S. J. & Brown, E. M. Protein kinase C phosphorylation of threonine at position 888 in Ca2+-sensing receptor (CaR) inhibits coupling to Ca2+ store release. J. Biol. Chem. 273, 21267–21275 (1998).

    CAS  PubMed  Google Scholar 

  142. 142

    Jiang, Y. -F. et al. Protein kinase C (PKC) phosphorylation of the Ca2+-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J. Biol. Chem. 277, 50543–50549 (2002).

    CAS  PubMed  Google Scholar 

  143. 143

    Young, S. H., Wu, S. V. & Rozengurt, E. Ca2+-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor require negative feedback by protein kinase C. J. Biol. Chem. 277, 46871–46876 (2002).

    CAS  PubMed  Google Scholar 

  144. 144

    Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121–138 (2000).

    CAS  PubMed  Google Scholar 

  145. 145

    Donnelly, J. G. Folic acid. Crit. Rev. Clin. Lab. Sci. 38, 183–223 (2001).

    CAS  PubMed  Google Scholar 

  146. 146

    Van den Veyver I. B. Genetic effects of methylation diets. Annu. Rev. Nutr. 22, 255–282 (2002).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the Division of Cancer Prevention and Mouse Models of Human Cancers Consortium of the National Institutes of Health/National Cancer Institute, Bethesda, Maryland, USA.

Author information



Corresponding author

Correspondence to Sergio A. Lamprecht.

Related links

Related links


colorectal cancer










cyclin D1











p38 MAPK

phospholipase A2








thymidylate synthase






Dietary components such as folate, methionine and choline. Folate is an important conveyor of one-carbon units at different states of oxidation, including the methyl (-CH3) group. Methionine donates the methyl group only.


(WD). A standard AIN-76A diet modified to have increased fat content, and decreased levels of calcium, vitamin D, folate and other one-carbon donors. These are reduced to nutrient-density levels approximating those found in Western diets.


(APC) is a typical, 'gatekeeper' tumour-suppressor gene, mutations of which are crucial initiating events in the development of human colorectal cancer. Mice carrying a mutant Apc allele for example, a mutation in the region corresponding to codon 850 (Apc-mutant min mice) or to codon 1638 (Apc 1638N mice) are — predisposed to the development of intestinal polyps.


A compound that binds ions for transport across membranes.


(VDRE). A short DNA sequence in a gene promoter to which the activated vitamin-D receptor binds and exerts its effects on transcription.


(SAM). SAM is a universal donor of the methyl group to DNA, histones and other bioactive molecules. After loss of the methyl group, SAM is converted to S-adenosyl homocysteine (SAH).


Genetic instability due to a high mutation rate, mainly in short nucleotide repeats. Cancers with this phenotype are associated with defects in DNA mismatch-repair genes.


A genomic system that detects and repairs incorrectly paired nucleotides that are introduced during DNA replication.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamprecht, S., Lipkin, M. Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3, 601–614 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing