Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer selection

Abstract

Cancers are often thought to be selectively neutral. This is because most of the individuals that they kill are post-reproductive. Some cancers, however, kill the young and so select for anticancer adaptations that reduce the chance of death. These adaptations could reduce the somatic mutation rate or the selective value of a mutant clone of cells, or increase the number of stages required for neoplasia. New theory predicts that cancer selection — selection to prevent or postpone deaths due to cancer — should be especially important as animals evolve new morphologies or larger, longer-lived bodies, and might account for some of the differences in the causes of cancer between mice and men.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hybrid fish with melanomas: the Gordon–Kosswig cross.
Figure 2: Number of tumour-suppressor loci required to keep the frequency of juvenile/pre-reproductive cancer below 10−4, as a function of the number of cells in the tissue or organism.

References

  1. Peto, R., Roe, F. J., Lee, P. N., Levy, L. & Clack, J. Cancer and ageing in mice and men. Br. J. Cancer 32, 411–442 (1975).

    Article  CAS  Google Scholar 

  2. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  3. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  Google Scholar 

  4. Schlumberger, H. G. & Lucké, B. Tumors of fishes, amphibians and reptiles. Cancer Res. 8, 657–754 (1948).

    CAS  Google Scholar 

  5. Scharrer, B. & Lochhead, M. S. Tumors in the invertebrates: a review. Cancer Res. 10, 403–419 (1950).

    CAS  Google Scholar 

  6. Dawe, C. J. & Harshbarger, J. C. (eds). Neoplasms and Related Disorders in Invertebrates and Lower Vertebrate Animals. National Cancer Institute Monograph 31 (National Institutes of Health, Bethesda, Maryland, USA, 1969).

    Google Scholar 

  7. Montali, R. J. & Migaki G. (eds). Pathology of Zoo Animals (Smithsonian Institution Press, Washington DC, 1980).

    Google Scholar 

  8. Dawe, C. J., Harshbarger, J. C., Kondo, S., Sugimura, T. & Takayama. S. (eds). Phyletic Approaches to Cancer (Japan Scientific Societies Press, Tokyo, 1981).

    Google Scholar 

  9. Squires, D. F. Neoplasia in a coral. Science 148, 503–505 (1965).

    Article  CAS  Google Scholar 

  10. Soule, J. D. Abnormal corallites. Science 150, 77 (1965).

    Article  Google Scholar 

  11. Squires, D. F. Abnormal corallites: reply. Science 150, 78 (1965).

    Article  Google Scholar 

  12. Finch, C. E. Longevity, Senesence and the Genome (Univ. Chicago Press, Chicago, 1990).

    Google Scholar 

  13. Rose, M. R. Evolutionary Biology of Aging (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  14. Greaves, M. Cancer, The Evolutionary Legacy (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  15. Graham, J. Cancer Selection: The New Theory of Evolution (Aculeus, Lexington, USA, 1992).

    Google Scholar 

  16. Schartl, M. Platyfish and swordtails: a genetic system for the analysis of molecular mechanisms in tumor formation. Trends Genet. 11, 185–189 (1995).

    Article  CAS  Google Scholar 

  17. Adam, D., Dimitrijevic, N. & Schartl, M. Tumor suppression in Xiphophorus by an accidentally acquired promoter. Science 259, 816–819 (1993).

    Article  CAS  Google Scholar 

  18. Nairn, R. S. et al. A CDKN2-like polymorphism in Xiphophorus LGV is associated with UV-B induced melanoma formation in platyfish-swordtail hybrids. Proc. Natl Acad. Sci. USA 93, 13042–13047 (1996).

    Article  CAS  Google Scholar 

  19. Weis, S. & Schartl, M. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus. Genetics 149, 1909–1920 (1998).

    CAS  Google Scholar 

  20. Tjalma, R. A. Canine bone sarcoma: estimation of relative risk as function of body size. J. Natl Cancer Instit. 36, 1137–1150 (1966).

    CAS  Google Scholar 

  21. Withrow, S. J., Powers, B. E., Straw, R. C. & Wilkins, R. M. Comparative aspects of osteosarcoma: dog versus man. Clin. Orthop. 270, 159–168 (1991).

    Google Scholar 

  22. Smith, M. A. & Gloeckler Ries, L. A. in Principles and Practice of Pediatric Oncology 4th edn (eds Pizzo, P. A. & Poplack, D. G.) 1–12 (Lippincott Williams & Wilkins, Philadelphia, 2002).

    Google Scholar 

  23. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  CAS  Google Scholar 

  24. Link, M. P., Gebhardt, M. C. & Meyers, P. A. in Osteosarcoma 4th edn (eds Pizzo, P. A. & Poplack, D. G.) 1051–1089 (Lippincott Williams & Wilkins, Philadelphia, 2002).

    Google Scholar 

  25. Fraumeni, J. F. Stature and malignant tumours of bone in childhood and adolesence. Cancer 20, 967–973 (1967).

    Article  Google Scholar 

  26. Price, C. Primary bone-forming tumours and their relationship to skeletal growth. Br. J. Bone Joint Surg. 40, 574–593 (1958).

    Article  Google Scholar 

  27. Bogin, B. Patterns of Human Growth (Cambridge Univ. Press, 1999).

    Google Scholar 

  28. Vanasse, G. J., Concannon, P. & Willerford, D. M. Regulated genomic instability and neoplasia in the lymphoid lineage. Blood 94, 3997–4010 (1999).

    CAS  Google Scholar 

  29. Nieuwenhuys, R., Ten Donkelaar, H. J. & Nicholson, C. The Central Nervous System of Vertebrates Vol. 3 (Springer, Berlin, 1998).

    Book  Google Scholar 

  30. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  Google Scholar 

  31. Jenkins, P. J. & Besser, M. Acromegaly and cancer: a problem. J. Clin. Endocrinol. Metab. 86, 2935–2941 (2001).

    Article  CAS  Google Scholar 

  32. Holly, J. M. P., Gunnell, D. J. & Davey Smith, G. Growth hormone, IGF-1 and cancer. Less intervention to avoid cancer? More intervention to prevent cancer? J. Endocrinol. 162, 321–330 (1999).

    Article  CAS  Google Scholar 

  33. Eigenmann, J. E. Insulin-like growth factor in the dog. Front. Horm. Res. 17, 161–172 (1987).

    Article  Google Scholar 

  34. Di Cristofano, A. et al. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  Google Scholar 

  35. Varley, J. M., Evans, D. G. R. & Birch, J. M. Li–Fraumeni syndrome: a molecular and clinical review. Br. J. Cancer 76, 1–14 (1997).

    Article  CAS  Google Scholar 

  36. Donehower, L. A. et al. Mice deficient for p53 are developmentaly normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  37. Jacks, T. et al. Tumour spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  38. Jacks, T. Tumour suppressor gene mutations in mice. Ann. Rev. Genet. 30, 603–636 (1996).

    Article  CAS  Google Scholar 

  39. Jacks, T. et al. Tumor predisposition in mice heterozygous for a targeted mutation in NF1. Nature Genet. 7, 353–361 (1994).

    Article  CAS  Google Scholar 

  40. Brannan, C. I. et al. Targeted disruption of the neurofibromatosis Type 1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    Article  CAS  Google Scholar 

  41. Easton, D. F., Ford, D. & Bishop, D. T. Breast and ovarian cancer incidence in BRCA1 mutation carriers. Am. J. Hum. Genet. 56, 265–271 (1995).

    Article  CAS  Google Scholar 

  42. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  Google Scholar 

  43. Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922 (2002).

    Article  CAS  Google Scholar 

  44. Weaver, Z. et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107 (2002).

    Article  CAS  Google Scholar 

  45. Andervort, H. B. & Dunn, T. B. Occurrence of tumors in wild house mice. J. Natl Cancer Instit. 28, 1153–1163 (1962).

    Google Scholar 

  46. Morris, J. & Dobson, J. Small Animal Oncology (Blackwell Science, Oxford, 2001).

    Book  Google Scholar 

  47. King, R. J. B. Cancer Biology 2nd edn (Pearson Education, Harlow, UK, 2000).

    Google Scholar 

  48. Landy, R. B. in Pathology of Zoo Animals (eds Montali, R. J. & Migaki, G.) (Smithsonian Institution Press, Washington DC, 1980).

    Google Scholar 

  49. Dawe, C. J. in Neoplasms and Related Disorders in Invertebrates and Lower Vertebrate Animals. National Cancer Institute Monograph 31 (eds Dawe, C. J. C. J. & Harshbarger, J. C.) (National Institutes of Health, Bethesda, Maryland, USA, 1969).

    Google Scholar 

  50. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  Google Scholar 

  51. Cairns, J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Natl Acad. Sci. USA 99, 10567–10570 (2002).

    Article  CAS  Google Scholar 

  52. Martin, G. M. et al. Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum. Mol. Genet. 5, 215–221 (1996).

    Article  CAS  Google Scholar 

  53. Turker, M. S. Estimation of mutation frequencies in normal mammalian cells and the development of cancer. Semin. Cancer Biol. 8, 407–419 (1998).

    Article  CAS  Google Scholar 

  54. Wu, X. & Pandolfi, P. P. Mouse models for multistep tumorigenesis. Trends Cell Biol. 11, S2–S9 (2001).

    Article  CAS  Google Scholar 

  55. Nunney, L. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. Lond. B. 266, 493–498 (1999)

    Article  CAS  Google Scholar 

  56. Garcia-Cao, I. et al. 'Super p53' mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    Article  CAS  Google Scholar 

  57. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis and stress resistance. Science 294, 591–595 (2001).

    Article  CAS  Google Scholar 

  58. Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18, 91–96 (2002).

    Article  CAS  Google Scholar 

  59. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  Google Scholar 

  60. Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 7, 139–146 (1993).

    Article  CAS  Google Scholar 

  61. Pompei, F., Polkanov, M. & Wilson, R. Age distribution of cancer in mice: the incidence turnover at old age. Toxicol. Indust. Health 17, 7–16 (2001).

    Article  CAS  Google Scholar 

  62. Hahn, W. C. & Weinberg, R. A. Modelling the molecular circuitry of cancer. Nature Rev. Cancer 2, 331–341 (2002).

    Article  CAS  Google Scholar 

  63. Hemann, M. T. & Greider, C. W. Wild-derived inbred mouse strains have short telomeres. Nucl. Acids Res. 28, 4474–4478 (2000).

    Article  CAS  Google Scholar 

  64. Robanus Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

    Article  CAS  Google Scholar 

  65. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  66. Lowe, C. & Goodman–Lowe, G. Suntanning in hammerhead sharks. Nature 383, 677 (1996).

    Article  CAS  Google Scholar 

  67. Frame, S. et al. Epithelial carcinogenesis in the mouse: correlating the genetics and the biology. Phil. Trans. R. Soc. Lond. B 353, 839–845 (1998).

    Article  CAS  Google Scholar 

  68. Heddle, J. A., Cosentino, L., Dawood, G., Swiger, R. R. & Paashuis-Lew, Y. Why do stem cells exist? Environ. Molec. Mut. 28, 334–341 (1996).

    Article  CAS  Google Scholar 

  69. Bergers, G. et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    Article  CAS  Google Scholar 

  70. Das, U. & Das, A. K. Review of canine transmissible venereal sarcoma. Vet. Res. Commun. 24, 545–556 (2000).

    Article  CAS  Google Scholar 

  71. Choi, Y. et al. Molecular structure of canine LINE-1 elements in canine transmissible venereal tumor. Anim. Genet. 30, 51–53 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Isacke and M. Schartl for commenting on drafts of the manuscript. We also thank A. Ashworth, J. Barnes, F. Pompei, M. Schartl and W. Weber for answering queries and providing the figures. Our research was supported by the Biotechnology and Biological Sciences Research Council (UK), Natural Environmental Research Council (UK), the Wellcome Trust and the Daphne Jackson Trust (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand M. Leroi.

Related links

Related links

DATABASES

LocusLink

Brca1

BRCA1

Cdkn1b

EGFR

ERBB2

IGF1

INK4A

MYC

Nf1

NF1

p107

p53

p63

p73

Pml

Pten

PTEN

Rb

RB

RET

Trp53

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leroi, A., Koufopanou, V. & Burt, A. Cancer selection. Nat Rev Cancer 3, 226–231 (2003). https://doi.org/10.1038/nrc1016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing