Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell motility in cancer invasion and metastasis: insights from simple model organisms

Key Points

  • The motility of both tumour and normal host cells contributes to tumour metastasis at several steps, including breaching of basement membrane, escape from the primary tumour, migration to blood and lymphatic vessels, intravasation and extravasation and movement into distant organs. The ability to migrate towards favourable environments is a fundamental and evolutionarily conserved cellular behaviour from unicellular organisms to humans.

  • Both normal and cancer cells migrate using diverse modes including amoeboid, mesenchymal, epithelial, collective and individual. Simple model organisms also exhibit these diverse modes of motility and offer experimental advantages such as low cost, amenability to large-scale genetic and pharmacological screening and live imaging of cells interacting within their native environments.

  • Studies of the social amoeba Dictyostelium discoideum have unravelled the complex signalling networks that mediate chemokine-directed cell migration, which is also observed with human immune and tumour cells.

  • The combination of high-resolution live imaging and genetic screening in the nematode has revealed that cells can breach a basement membrane by pushing the matrix aside and also by degrading it. This potentially offers a new mechanism to target cancer invasion therapeutically.

  • Cooperative, collective cell motility appears to contribute to tumour metastasis. Border cells in the Drosophila melanogaster ovary serve as a simple model that is genetically tractable and amenable to live imaging. This model has revealed that some mechanisms of cooperative, collective cell migration, such as the requirement for E-cadherin, differ from those of single-cell motility.

  • Direct modelling of metastasis can be carried out in both flies and fish. Work in flies has resulted in the identification and optimization of kinase inhibitors for metastatic thyroid cancer. The fish offers the lowest-cost vertebrate model for intravasation and extravasation studies and is amenable to live imaging as well as genetic and pharmacological manipulation.

Abstract

Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simple model organisms can be used to investigate aspects of tumour invasion and metastasis.
Figure 2: Regulation of chemoattraction in Dictyostelium discoideum.
Figure 3: Caenorhabditis elegans anchor cell invasion.
Figure 4: Border cell migration in Drosophila melanogaster.
Figure 5: Jnk pathway signalling is a key part of metastatic spread in Drosophila melanogaster.

References

  1. 1

    Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Jin, T., Xu, X. & Hereld, D. Chemotaxis, chemokine receptors and human disease. Cytokine 44, 1–8 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Charest, P. G. & Firtel, R. A. Big roles for small GTPases in the control of directed cell movement. Biochem. J. 401, 377–390 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Sarris, M. & Sixt, M. Navigating in tissue mazes: chemoattractant interpretation in complex environments. Curr. Opin. Cell Biol. 36, 93–102 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Te Boekhorst, V., Preziosi, L. & Friedl, P. Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Schmidt, S. & Friedl, P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 339, 83–92 (2010).

    CAS  Google Scholar 

  14. 14

    Lämmermann, T. & Sixt, M. Mechanical modes of “amoeboid” cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Paluch, E. K. & Raz, E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25, 582–590 (2013).

    CAS  Google Scholar 

  16. 16

    Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Haeger, A., Wolf, K., Zegers, M. M. & Friedl, P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 25, 556–566 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Weaver, V. M., Howlett, A. R., Langton-Webster, B., Petersen, O. W. & Bissell, M. J. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin. Cancer Biol. 6, 175–184 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    CAS  PubMed  Google Scholar 

  22. 22

    Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Friedl, P., Sahai, E., Weiss, S. & Yamada, K. M. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13, 743–747 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Saxena, M. & Christofori, G. Rebuilding cancer metastasis in the mouse. Mol. Oncol. 7, 283–296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  28. 28

    Bloom, H. J. G. The value of histology in the prognosis and classification of breast cancer. Proc. R. Soc. Med. 51, 122–126 (1957).

    Google Scholar 

  29. 29

    Gordetsky, J. & Epstein, J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Qian, B.-Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    CAS  PubMed  Google Scholar 

  33. 33

    Sceneay, J., Smyth, M. J. & Möller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Artemenko, Y., Lampert, T. J. & Devreotes, P. N. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell. Mol. Life Sci. 71, 3711–3747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Chisholm, R. L. & Firtel, R. A. Insights into morphogenesis from a simple developmental system. Nat. Rev. Mol. Cell Biol. 5, 531–541 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Nichols, J. M., Veltman, D. & Kay, R. R. Chemotaxis of a model organism: progress with Dictyostelium. Curr. Opin. Cell Biol. 36, 7–12 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nat. Rev. Cancer 11, 573–587 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Swaney, K. F., Huang, C.-H. & Devreotes, P. N. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Parent, C. A. & Devreotes, P. N. A cell's sense of direction. Science 284, 765–770 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Xiao, Z., Zhang, N., Murphy, D. B. & Devreotes, P. N. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 139, 365–374 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein betagamma complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998). This work establishes D. discoideum as a model for imaging key biochemical events underlying chemotaxis at the leading edge using a novel biosensor for G protein signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Schneider, I. C. & Haugh, J. M. Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J. Cell Biol. 171, 883–892 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Bear, J. E. & Haugh, J. M. Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr. Opin. Cell Biol. 30, 74–82 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002). This paper demonstrates the key role of the PTEN tumour suppressor in chemotaxis.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Bagorda, A. & Parent, C. A. Eukaryotic chemotaxis at a glance. J. Cell Sci. 121, 2621–2624 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Mayer, I. A. & Arteaga, C. L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med. 67, 11–28 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Jongsma, M., Matas-Rico, E., Rzadkowski, A., Jalink, K. & Moolenaar, W. H. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS ONE 6, e29260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Shukla, S. et al. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer 121, 1424–1432 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Kim, D. et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 15, 1953–1962 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Hawkins, P. T. & Stephens, L. R. PI3K signalling in inflammation. Biochim. Biophys. Acta 1851, 882–897 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Zhang, S. & Yu, D. PI(3)king apart PTEN's role in cancer. Clin. Cancer Res. 16, 4325–4330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Okkenhaug, K., Graupera, M. & Vanhaesebroeck, B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6, 1090–1105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Rericha, E. C. & Parent, C. A. Steering in quadruplet: the complex signaling pathways directing chemotaxis. Sci. Signal. 1, e26 (2008).

    Google Scholar 

  64. 64

    Brzostowski, J. A. et al. Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay. J. Cell Sci. 126, 4614–4626 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    van Zijl, F., Krupitza, G. & Mikulits, W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res. 728, 23–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Yilmaz, M. & Christofori, G. Mechanisms of motility in metastasizing cells. Mol. Cancer Res. 8, 629–642 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Arshad, N. & Visweswariah, S. S. The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett. 586, 2835–2840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Cybulski, N. & Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620–627 (2009).

    CAS  PubMed  Google Scholar 

  69. 69

    Park, J. B. et al. Phospholipase signalling networks in cancer. Nat. Rev. Cancer 12, 782–792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Choi, J. W. et al. LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 50, 157–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Sherwood, D. R. & Sternberg, P. W. Anchor cell invasion into the vulval epithelium in C. elegans. Dev. Cell 5, 21–31 (2003). This work establishes C. elegans as a powerful model for cells crossing basement membranes owing to the exceptionally clear live imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Sherwood, D. R. Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol. 16, 250–256 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Matus, D. Q. et al. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev. Cell 35, 162–174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Sherwood, D. R., Butler, J. A., Kramer, J. M. & Sternberg, P. W. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell 121, 951–962 (2005). This work uses genetic screening and live imaging to dissect molecular pathways of basement membrane removal in C. elegans with unprecedented clarity and precision.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Ozanne, B. W., Spence, H. J., McGarry, L. C. & Hennigan, R. F. Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1–10 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Hastie, E. L. & Sherwood, D. R. A new front in cell invasion: The invadopodial membrane. Eur. J. Cell Biol. 95, 441–448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Lohmer, L. L. et al. A sensitized screen for genes promoting invadopodia function in vivo: CDC-42 and Rab GDI-1 direct distinct aspects of invadopodia formation. PLoS Genet. 12, e1005786 (2016). This work exploits the power of C. elegans genetics to identify key genes required for invadopodia formation and function in vivo.

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Hagedorn, E. J. et al. The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. J. Cell Biol. 201, 903–913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Murphy, D. A. & Courtneidge, S. A. The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Castro-Castro, A. et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu. Rev. Cell Dev. Biol. 32, 555–576 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Foxall, E., Pipili, A., Jones, G. E. & Wells, C. M. Significance of kinase activity in the dynamic invadosome. Eur. J. Cell Biol. 95, 483–492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Pozzi, A., Yurchenco, P. D. & Iozzo, R. V. The nature and biology of basement membranes. Matrix Biol. 57–58, 1–11 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204, 291–302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Kessenbrock, K., Wang, C.-Y. & Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 44–46, 184–190 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Corcoran, A. & Del Maestro, R. F. Testing the “Go or Grow” hypothesis in human medulloblastoma cell lines in two and three dimensions. Neurosurgery 53, 174–184 (2003).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Garay, T. et al. Cell migration or cytokinesis and proliferation? — revisiting the “go or grow” hypothesis in cancer cells in vitro. Exp. Cell Res. 319, 3094–3103 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Giese, A. et al. Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67, 275–282 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Man, Y.-G. et al. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J. Cancer 4, 84–95 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Ewald, A. J. Pulling cells out of tumours. Nat. Cell Biol. 19, 147–149 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Konen, J. et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8, 15078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Theveneau, E. & Mayor, R. Collective cell migration of epithelial and mesenchymal cells. Cell. Mol. Life Sci. 70, 3481–3492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014). This work demonstrates that circulating breast tumour cell clusters are more effective than single cells at colonizing distant sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Grigore, A. D., Jolly, M. K., Jia, D., Farach-Carson, M. C. & Levine, H. Tumor budding: the name is EMT. Partial EMT. J. Clin. Med. 5, 51 (2016).

    Google Scholar 

  101. 101

    Montell, D. J., Yoon, W. H. & Starz-Gaiano, M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. Rev. Mol. Cell Biol. 13, 631–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Montell, D. J., Rorth, P. & Spradling, A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992). This paper establishes D. melanogaster border cells as a genetic model for studying collective epithelial cell motility in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001). This work exploits the power of genetic screening in mosaic clones to show for the first time that JAK–STAT signalling is necessary and sufficient to activate motility within normal epithelial cells in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14, 726–738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Yoon, W. H., Meinhardt, H. & Montell, D. J. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat. Cell Biol. 13, 1062–1069 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Silver, D. L., Naora, H., Liu, J., Cheng, W. & Montell, D. J. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res. 64, 3550–3558 (2004). This work demonstrates the role of STAT3 in cancer cell motility in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Yue, P. et al. Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31, 2309–2322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Gu, L. et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. Relat. Cancer 17, 481–493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Moser, C. et al. STAT5b as molecular target in pancreatic cancer — inhibition of tumor growth, angiogenesis, and metastases. Neoplasia 14, 915–925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Niwa, Y. et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24, 6406–6417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Chuang, C.-H. et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat. Med. 23, 291–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Teng, Y., Ross, J. L. & Cowell, J. K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 3, e28086 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Kuzet, S.-E. & Gaggioli, C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 365, 607–619 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10, 483–495 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Duchek, P., Somogyi, K., Jékely, G., Beccari, S. & Rørth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    CAS  PubMed  Google Scholar 

  116. 116

    McDonald, J. A., Pinheiro, E. M., Kadlec, L., Schupbach, T. & Montell, D. J. Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296, 94–103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003).

    CAS  PubMed  Google Scholar 

  118. 118

    Duchek, P. & Rørth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).

    CAS  PubMed  Google Scholar 

  119. 119

    Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Ridley, A. J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 36, 103–112 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Zegers, M. M. & Friedl, P. Rho GTPases in collective cell migration. Small GTPases 5, e28997 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. 122

    Wang, X., He, L., Wu, Y. I., Hahn, K. M. & Montell, D. J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Fernández-Espartero, C. H. et al. GTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J. Cell Sci. 126, 2285–2293 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Ramel, D., Wang, X., Laflamme, C., Montell, D. J. & Emery, G. Rab11 regulates cell-cell communication during collective cell movements. Nat. Cell Biol. 15, 317–324 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 5, 355–366 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Hou, J.-M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Niewiadomska, P., Godt, D. & Tepass, U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999). This work demonstrates a surprising requirement for E-cadherin-mediated adhesion between border cells and nurse cells during border cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014). This study uses sophisticated genetics and live imaging to show that E-cadherin serves three distinct positive roles in promoting collective direction-sensing during border cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Cai, D. et al. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment. Proc. Natl Acad. Sci. USA 113, E2134–E2141 (2016).

    CAS  Google Scholar 

  134. 134

    Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Reinhold, W. C. et al. Multifactorial regulation of E-cadherin expression: an integrative study. Mol. Cancer Ther. 9, 1–16 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920–6929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Jolly, M. K., Ware, K. E., Gilja, S., Somarelli, J. A. & Levine, H. EMT and MET: necessary or permissive for metastasis? Mol. Oncol. 11, 755–769 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Rodriguez, F. J., Lewis-Tuffin, L. J. & Anastasiadis, P. Z. E-Cadherin's dark side: possible role in tumor progression. Biochim. Biophys. Acta 1826, 23–31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Shamir, E. R. et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J. Cell Biol. 204, 839–856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Sallak, Y., Torres, A. Y., Yin, H. & Montell, D. Src42A required for collective border cell migration in vivo. bioRxiv https://doi.org/10.1101/186049 (2017).

  142. 142

    Serrels, A., Canel, M., Brunton, V. G. & Frame, M. C. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh. Migr. 5, 360–365 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Cai, D. & Montell, D. J. Diverse and dynamic sources and sinks in gradient formation and directed migration. Curr. Opin. Cell Biol. 30, 91–98 (2014).

    CAS  PubMed  Google Scholar 

  144. 144

    Pocha, S. M. & Montell, D. J. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu. Rev. Genet. 48, 295–318 (2014).

    CAS  PubMed  Google Scholar 

  145. 145

    Kunwar, P. S., Siekhaus, D. E. & Lehmann, R. In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265 (2006).

    CAS  Google Scholar 

  146. 146

    Bae, Y.-K., Trisnadi, N., Kadam, S. & Stathopoulos, A. The role of FGF signaling in guiding coordinate movement of cell groups: guidance cue and cell adhesion regulator? Cell Adh. Migr. 6, 397–403 (2012).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Ratheesh, A., Belyaeva, V. & Siekhaus, D. E. Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Curr. Opin. Cell Biol. 36, 71–79 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Evans, I. R. & Wood, W. Drosophila blood cell chemotaxis. Curr. Opin. Cell Biol. 30, 1–8 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Trisnadi, N. & Stathopoulos, A. Ectopic expression screen identifies genes affecting Drosophila mesoderm development including the HSPG Trol. G3 5, 301–313 (2015).

    CAS  Google Scholar 

  150. 150

    Heisenberg, C.-P. Dorsal closure in Drosophila: cells cannot get out of the tight spot. Bioessays 31, 1284–1287 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Andrew, D. J. & Ewald, A. J. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev. Biol. 341, 34–55 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Bischoff, M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev. Biol. 363, 179–190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978). This study establishes D. melanogaster as a tumour model and demonstrates that mutations can cause neoplasms in this organism.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Elsum, I., Yates, L., Humbert, P. O. & Richardson, H. E. The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem. 53, 141–168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Campanale, J. P., Sun, T. Y. & Montell, D. J. Development and dynamics of cell polarity at a glance. J. Cell Sci. 130, 1201–1207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Halaoui, R. & McCaffrey, L. Rewiring cell polarity signaling in cancer. Oncogene 34, 939–950 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Feigin, M. E. et al. Mislocalization of the cell polarity protein scribble promotes mammary tumorigenesis and is associated with basal breast cancer. Cancer Res. 74, 3180–3194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Lin, W.-H., Asmann, Y. W. & Anastasiadis, P. Z. Expression of polarity genes in human cancer. Cancer Inform. 14, 15–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Vaira, V. et al. Aberrant overexpression of the cell polarity module scribble in human cancer. Am. J. Pathol. 178, 2478–2483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Zhan, L. et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135, 865–878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003). References 164 and 165 establish D. melanogaster as a model for genetic screening for mutations that promote the spread of cells expressing oncogenic Ras or Notch throughout the fly larva.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Chi, C. et al. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J. Biol. Chem. 285, 21817–21823 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Dhanasekaran, D. N. & Reddy, E. P. JNK signaling in apoptosis. Oncogene 27, 6245–6251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Leong, G. R., Goulding, K. R., Amin, N., Richardson, H. E. & Brumby, A. M. Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol. 7, 62 (2009).

    PubMed  PubMed Central  Google Scholar 

  170. 170

    Igaki, T., Pagliarini, R. A. & Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16, 1139–1146 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Sun, G. & Irvine, K. D. Ajuba family proteins link JNK to Hippo signaling. Sci. Signal. 6, ra81 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. 172

    Rudrapatna, V. A., Bangi, E. & Cagan, R. L. Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep. 14, 172–177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Chen, F. JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res. 72, 379–386 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Read, R. D. et al. A Drosophila model of multiple endocrine neoplasia type 2. Genetics 171, 1057–1081 (2005). This study establishes that D. melanogaster , improbably, serves as a model for multiple endocrine neoplasia type 2 (MEN2).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Das, T. K. & Cagan, R. L. A. Drosophila approach to thyroid cancer therapeutics. Drug Discov. Today Technol. 10, e65–71 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. 176

    Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012). This study demonstrates the power of D. melanogaster to identify a kinase inhibitor that when used in combination with inhibitors of other targets renders it more effective and safer than another drug already in clinical use for MEN2.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Sonoshita, M. & Cagan, R. L. Modeling human cancers in drosophila. Curr. Top. Dev. Biol. 121, 287–309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47–55 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015). References 178 and 179 show that D. melanogaster can model systemic features such as cachexia.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Petrie, R. J. & Yamada, K. M. Multiple mechanisms of 3D migration: the origins of plasticity. Curr. Opin. Cell Biol. 42, 7–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Zatulovskiy, E., Tyson, R., Bretschneider, T. & Kay, R. R. Bleb-driven chemotaxis of Dictyostelium cells. J. Cell Biol. 204, 1027–1044 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Liu, Y.-J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

    CAS  Google Scholar 

  183. 183

    Harvie, E. A. & Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J. Leukoc. Biol. 98, 523–537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Paksa, A. & Raz, E. Zebrafish germ cells: motility and guided migration. Curr. Opin. Cell Biol. 36, 80–85 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Blaser, H. et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118, 4027–4038 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Meyen, D. et al. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. elife 4, e05279 (2015).

    Google Scholar 

  187. 187

    Dumstrei, K., Mennecke, R. & Raz, E. Signaling pathways controlling primordial germ cell migration in zebrafish. J. Cell Sci. 117, 4787–4795 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Blaser, H. et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11, 613–627 (2006).

    CAS  Google Scholar 

  189. 189

    Tarbashevich, K., Reichman-Fried, M., Grimaldi, C. & Raz, E. Chemokine-dependent pH elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells. Curr. Biol. 25, 1096–1103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Bereiter-Hahn, J., Lück, M., Miebach, T., Stelzer, H. K. & Vöth, M. Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J. Cell Sci. 96, 171–188 (1990).

    PubMed  PubMed Central  Google Scholar 

  192. 192

    Diz- Muñoz, A. et al. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol. 14, 74 (2016).

    Google Scholar 

  193. 193

    Balzer, E. M. et al. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045–4056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Stroka, K. M. & Konstantopoulos, K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol, Cell Physiol. 306, C98–C109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    Ignatius, M. S., Hayes, M. & Langenau, D. M. In vivo imaging of cancer in zebrafish. Adv. Exp. Med. Biol. 916, 219–237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Spaink, H. P. et al. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 62, 246–254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Taylor, A. M. & Zon, L. I. Zebrafish tumor assays: the state of transplantation. Zebrafish 6, 339–346 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Zhao, S., Huang, J. & Ye, J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res. 34, 80 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. 199

    Starnes, T. W. & Huttenlocher, A. Neutrophil reverse migration becomes transparent with zebrafish. Adv. Hematol. 2012, 398640 (2012).

    PubMed  PubMed Central  Google Scholar 

  200. 200

    White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008). This paper discusses the use of transparent zebrafish as a xenograft model that allows visualization of tumour spread.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624–636 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Moore, J. C. et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med. 213, 2575–2589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Tang, Q. et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat. Methods 11, 821–824 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Drabsch, Y., Snaar-Jagalska, B. E. & Dijke, P. Fish tales: The use of zebrafish xenograft human cancer cell models. Histol. Histopathol. 32, 673–686 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Mercatali, L. et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int. J. Mol. Sci. 17, E1375 (2016). This paper demonstrates that patient-derived tumour tissue can be transplanted into zebrafish and that the behaviour of these xenografts reflects the clinical course of the patients' disease.

    PubMed  PubMed Central  Google Scholar 

  206. 206

    Gaudenzi, G. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 57, 214–219 (2016).

    PubMed  PubMed Central  Google Scholar 

  207. 207

    Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. & Klemke, R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl Acad. Sci. USA 104, 17406–17411 (2007).

    CAS  Google Scholar 

  208. 208

    Reymond, N. et al. RhoC and ROCKs regulate cancer cell interactions with endothelial cells. Mol. Oncol. 9, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211

    Stoletov, K. et al. Visualizing extravasation dynamics of metastatic tumor cells. J. Cell Sci. 123, 2332–2341 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212

    Hagedorn, E. J. et al. Integrin acts upstream of netrin signaling to regulate formation of the anchor cell's invasive membrane in C. elegans. Dev. Cell 17, 187–198 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213

    Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Reymond, N. et al. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J. Cell Biol. 199, 653–668 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Pagès, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2010).

    PubMed  Google Scholar 

  216. 216

    Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    CAS  PubMed  Google Scholar 

  217. 217

    Roh-Johnson, M. et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33, 4203–4212 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218

    Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    CAS  PubMed  Google Scholar 

  219. 219

    Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    CAS  PubMed  Google Scholar 

  220. 220

    Robinson, B. D. et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res. 15, 2433–2441 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222

    Wang, J. et al. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 75, 306–315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223

    Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234–E8243 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Mezawa, Y. & Orimo, A. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas. Cell Tissue Res. 365, 675–689 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225

    Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002). This paper supports the view that genes that drive tumour initiation and progression may overlap substantially.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226

    Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    CAS  Google Scholar 

  227. 227

    Kodura, M. A. & Souchelnytskyi, S. Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases. Cancer Metastasis Rev. 34, 611–618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228

    Nguyen, D. X. & Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8, 341–352 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229

    Nguyen, D. X., Bos, P. D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009). This paper proposes the view that metastasis genes can be identified.

    CAS  PubMed  Google Scholar 

  230. 230

    Meehan, W. J. et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J. Biol. Chem. 279, 1562–1569 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Horak, C. E. et al. Nm23-H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res. 67, 11751–11759 (2007).

    CAS  PubMed  Google Scholar 

  232. 232

    Sahni, S. et al. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J. Biol. Chem. 289, 9692–9709 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233

    Wessels, D., Lusche, D. F., Kuhl, S., Heid, P. & Soll, D. R. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J. Cell Sci. 120, 2517–2531 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234

    Lee, T. & Montell, D. J. Multiple Ras signals pattern the Drosophila ovarian follicle cells. Dev. Biol. 185, 25–33 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235

    Dang, T. T., Prechtl, A. M. & Pearson, G. W. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion. Cancer Res. 71, 6857–6866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. 236

    Westcott, J. M. et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J. Clin. Invest. 125, 1927–1943 (2015).

    PubMed  PubMed Central  Google Scholar 

  237. 237

    Edme, N., Downward, J., Thiery, J.-P. & Boyer, B. Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J. Cell Sci. 115, 2591–2601 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238

    Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239

    Tsuji, T., Ibaragi, S. & Hu, G. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 69, 7135–7139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240

    Riihimäki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    PubMed  PubMed Central  Google Scholar 

  241. 241

    Entenberg, D. et al. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital 4, e1086613 (2015).

    PubMed  PubMed Central  Google Scholar 

  242. 242

    Ramakrishna, R. & Rostomily, R. Seed, soil, and beyond: the basic biology of brain metastasis. Surg. Neurol. Int. 4, S256–S264 (2013).

    PubMed  PubMed Central  Google Scholar 

  243. 243

    Ren, G., Esposito, M. & Kang, Y. Bone metastasis and the metastatic niche. J. Mol. Med. 93, 1203–1212 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244

    Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    CAS  PubMed  Google Scholar 

  245. 245

    Avgustinova, A. et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat. Commun. 7, 10305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246

    Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247

    Melero, I., Rouzaut, A., Motz, G. T. & Coukos, G. T-Cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4, 522–526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. 248

    Senbabaoglu, Y. et al. The landscape of T cell infiltration in human cancer and its association with antigen presenting gene expression. bioRxiv https://doi.org/10.1101/025908 (2015).

  249. 249

    Nakaya, Y. & Sheng, G. EMT in developmental morphogenesis. Cancer Lett. 341, 9–15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250

    Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. 251

    Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. 252

    Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015). References 251 and 252 show that, in contrast to established dogma, EMT is not necessary for metastasis of lung or pancreatic cancers but rather confers chemoresistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. 253

    Steinestel, K., Eder, S., Schrader, A. J. & Steinestel, J. Clinical significance of epithelial-mesenchymal transition. Clin. Transl Med. 3, 17 (2014).

    PubMed  PubMed Central  Google Scholar 

  254. 254

    Bronsert, P. et al. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. J. Pathol. 234, 410–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their anonymous reviewers for helpful suggestions and careful reading of the manuscript. This work was funded by the Intramural Research Program, National Cancer Institute, National Institutes of Health, by internal funding from the University of Michigan to C.A.P and by NIH grants R01GM73164 and R01GM46425 to D.J.M.

Author information

Affiliations

Authors

Contributions

D.J.M. wrote the sections on Caenorhabditis elegans and Drosophila melanogaster. C.A.P and C.H.S. wrote the sections on Dictyostelium discoideum and zebrafish. All authors contributed equally to writing the other parts of the article and reviewing and/or editing the manuscript before submission.

Corresponding authors

Correspondence to Carole A. Parent or Denise J. Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

RELATED LINKS

CbioPortal

PowerPoint slides

Glossary

Lamellipodium

A quasi-two-dimensional structure localized at the leading edge of motile cells that contains a highly dynamic actin network.

Lamellum

A structure containing stable actin filaments and mature adhesion sites localized just behind the lamellipodium.

Basement membrane

A thin, fibrous membrane that separates epithelium, mesothelium or endothelium from the underlying stroma.

Chemokines

A family of low molecular mass proteins that are secreted by various cells and regulate a variety of responses, including cell migration, morphogenesis and proliferation as well as angiogenesis by binding to G protein-coupled receptors.

Matrix metalloproteinase

(MMP). Calcium-dependent, zinc-containing endopeptidases that degrade matrix proteins.

Mesendoderm

An embryonic tissue layer that differentiates into mesoderm and endoderm.

Directional persistence

A measure commonly defined as the ratio of displacement to trajectory length.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stuelten, C., Parent, C. & Montell, D. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 18, 296–312 (2018). https://doi.org/10.1038/nrc.2018.15

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing