Cell motility in cancer invasion and metastasis: insights from simple model organisms

Key Points

  • The motility of both tumour and normal host cells contributes to tumour metastasis at several steps, including breaching of basement membrane, escape from the primary tumour, migration to blood and lymphatic vessels, intravasation and extravasation and movement into distant organs. The ability to migrate towards favourable environments is a fundamental and evolutionarily conserved cellular behaviour from unicellular organisms to humans.

  • Both normal and cancer cells migrate using diverse modes including amoeboid, mesenchymal, epithelial, collective and individual. Simple model organisms also exhibit these diverse modes of motility and offer experimental advantages such as low cost, amenability to large-scale genetic and pharmacological screening and live imaging of cells interacting within their native environments.

  • Studies of the social amoeba Dictyostelium discoideum have unravelled the complex signalling networks that mediate chemokine-directed cell migration, which is also observed with human immune and tumour cells.

  • The combination of high-resolution live imaging and genetic screening in the nematode has revealed that cells can breach a basement membrane by pushing the matrix aside and also by degrading it. This potentially offers a new mechanism to target cancer invasion therapeutically.

  • Cooperative, collective cell motility appears to contribute to tumour metastasis. Border cells in the Drosophila melanogaster ovary serve as a simple model that is genetically tractable and amenable to live imaging. This model has revealed that some mechanisms of cooperative, collective cell migration, such as the requirement for E-cadherin, differ from those of single-cell motility.

  • Direct modelling of metastasis can be carried out in both flies and fish. Work in flies has resulted in the identification and optimization of kinase inhibitors for metastatic thyroid cancer. The fish offers the lowest-cost vertebrate model for intravasation and extravasation studies and is amenable to live imaging as well as genetic and pharmacological manipulation.


Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Simple model organisms can be used to investigate aspects of tumour invasion and metastasis.
Figure 2: Regulation of chemoattraction in Dictyostelium discoideum.
Figure 3: Caenorhabditis elegans anchor cell invasion.
Figure 4: Border cell migration in Drosophila melanogaster.
Figure 5: Jnk pathway signalling is a key part of metastatic spread in Drosophila melanogaster.


  1. 1

    Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

  2. 2

    Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

  3. 3

    Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

  4. 4

    Klein, C. A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

  5. 5

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

  6. 6

    Jin, T., Xu, X. & Hereld, D. Chemotaxis, chemokine receptors and human disease. Cytokine 44, 1–8 (2008).

  7. 7

    Charest, P. G. & Firtel, R. A. Big roles for small GTPases in the control of directed cell movement. Biochem. J. 401, 377–390 (2007).

  8. 8

    Sarris, M. & Sixt, M. Navigating in tissue mazes: chemoattractant interpretation in complex environments. Curr. Opin. Cell Biol. 36, 93–102 (2015).

  9. 9

    Te Boekhorst, V., Preziosi, L. & Friedl, P. Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491–526 (2016).

  10. 10

    Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

  11. 11

    Montell, D. J. Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008).

  12. 12

    Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

  13. 13

    Schmidt, S. & Friedl, P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 339, 83–92 (2010).

  14. 14

    Lämmermann, T. & Sixt, M. Mechanical modes of “amoeboid” cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

  15. 15

    Paluch, E. K. & Raz, E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25, 582–590 (2013).

  16. 16

    Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

  17. 17

    Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

  18. 18

    Haeger, A., Wolf, K., Zegers, M. M. & Friedl, P. Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 25, 556–566 (2015).

  19. 19

    Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

  20. 20

    Weaver, V. M., Howlett, A. R., Langton-Webster, B., Petersen, O. W. & Bissell, M. J. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin. Cancer Biol. 6, 175–184 (1995).

  21. 21

    Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

  22. 22

    Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

  23. 23

    Friedl, P., Sahai, E., Weiss, S. & Yamada, K. M. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13, 743–747 (2012).

  24. 24

    Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

  25. 25

    Saxena, M. & Christofori, G. Rebuilding cancer metastasis in the mouse. Mol. Oncol. 7, 283–296 (2013).

  26. 26

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

  27. 27

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  28. 28

    Bloom, H. J. G. The value of histology in the prognosis and classification of breast cancer. Proc. R. Soc. Med. 51, 122–126 (1957).

  29. 29

    Gordetsky, J. & Epstein, J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25 (2016).

  30. 30

    Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

  31. 31

    Qian, B.-Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

  32. 32

    Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

  33. 33

    Sceneay, J., Smyth, M. J. & Möller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013).

  34. 34

    Artemenko, Y., Lampert, T. J. & Devreotes, P. N. Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell. Mol. Life Sci. 71, 3711–3747 (2014).

  35. 35

    Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

  36. 36

    Chisholm, R. L. & Firtel, R. A. Insights into morphogenesis from a simple developmental system. Nat. Rev. Mol. Cell Biol. 5, 531–541 (2004).

  37. 37

    Nichols, J. M., Veltman, D. & Kay, R. R. Chemotaxis of a model organism: progress with Dictyostelium. Curr. Opin. Cell Biol. 36, 7–12 (2015).

  38. 38

    Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nat. Rev. Cancer 11, 573–587 (2011).

  39. 39

    Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

  40. 40

    Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

  41. 41

    Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

  42. 42

    Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

  43. 43

    Swaney, K. F., Huang, C.-H. & Devreotes, P. N. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289 (2010).

  44. 44

    Parent, C. A. & Devreotes, P. N. A cell's sense of direction. Science 284, 765–770 (1999).

  45. 45

    Xiao, Z., Zhang, N., Murphy, D. B. & Devreotes, P. N. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J. Cell Biol. 139, 365–374 (1997).

  46. 46

    Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein betagamma complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

  47. 47

    Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998). This work establishes D. discoideum as a model for imaging key biochemical events underlying chemotaxis at the leading edge using a novel biosensor for G protein signalling.

  48. 48

    Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

  49. 49

    Schneider, I. C. & Haugh, J. M. Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. J. Cell Biol. 171, 883–892 (2005).

  50. 50

    Bear, J. E. & Haugh, J. M. Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr. Opin. Cell Biol. 30, 74–82 (2014).

  51. 51

    Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002). This paper demonstrates the key role of the PTEN tumour suppressor in chemotaxis.

  52. 52

    Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

  53. 53

    Bagorda, A. & Parent, C. A. Eukaryotic chemotaxis at a glance. J. Cell Sci. 121, 2621–2624 (2008).

  54. 54

    Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

  55. 55

    Mayer, I. A. & Arteaga, C. L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med. 67, 11–28 (2016).

  56. 56

    Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

  57. 57

    Jongsma, M., Matas-Rico, E., Rzadkowski, A., Jalink, K. & Moolenaar, W. H. LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS ONE 6, e29260 (2011).

  58. 58

    Shukla, S. et al. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer 121, 1424–1432 (2007).

  59. 59

    Kim, D. et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 15, 1953–1962 (2001).

  60. 60

    Hawkins, P. T. & Stephens, L. R. PI3K signalling in inflammation. Biochim. Biophys. Acta 1851, 882–897 (2015).

  61. 61

    Zhang, S. & Yu, D. PI(3)king apart PTEN's role in cancer. Clin. Cancer Res. 16, 4325–4330 (2010).

  62. 62

    Okkenhaug, K., Graupera, M. & Vanhaesebroeck, B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6, 1090–1105 (2016).

  63. 63

    Rericha, E. C. & Parent, C. A. Steering in quadruplet: the complex signaling pathways directing chemotaxis. Sci. Signal. 1, e26 (2008).

  64. 64

    Brzostowski, J. A. et al. Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay. J. Cell Sci. 126, 4614–4626 (2013).

  65. 65

    van Zijl, F., Krupitza, G. & Mikulits, W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res. 728, 23–34 (2011).

  66. 66

    Yilmaz, M. & Christofori, G. Mechanisms of motility in metastasizing cells. Mol. Cancer Res. 8, 629–642 (2010).

  67. 67

    Arshad, N. & Visweswariah, S. S. The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett. 586, 2835–2840 (2012).

  68. 68

    Cybulski, N. & Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends Biochem. Sci. 34, 620–627 (2009).

  69. 69

    Park, J. B. et al. Phospholipase signalling networks in cancer. Nat. Rev. Cancer 12, 782–792 (2012).

  70. 70

    Choi, J. W. et al. LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 50, 157–186 (2010).

  71. 71

    Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

  72. 72

    Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

  73. 73

    Sherwood, D. R. & Sternberg, P. W. Anchor cell invasion into the vulval epithelium in C. elegans. Dev. Cell 5, 21–31 (2003). This work establishes C. elegans as a powerful model for cells crossing basement membranes owing to the exceptionally clear live imaging.

  74. 74

    Sherwood, D. R. Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol. 16, 250–256 (2006).

  75. 75

    Matus, D. Q. et al. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev. Cell 35, 162–174 (2015).

  76. 76

    Sherwood, D. R., Butler, J. A., Kramer, J. M. & Sternberg, P. W. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell 121, 951–962 (2005). This work uses genetic screening and live imaging to dissect molecular pathways of basement membrane removal in C. elegans with unprecedented clarity and precision.

  77. 77

    Ozanne, B. W., Spence, H. J., McGarry, L. C. & Hennigan, R. F. Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1–10 (2007).

  78. 78

    Hastie, E. L. & Sherwood, D. R. A new front in cell invasion: The invadopodial membrane. Eur. J. Cell Biol. 95, 441–448 (2016).

  79. 79

    Lohmer, L. L. et al. A sensitized screen for genes promoting invadopodia function in vivo: CDC-42 and Rab GDI-1 direct distinct aspects of invadopodia formation. PLoS Genet. 12, e1005786 (2016). This work exploits the power of C. elegans genetics to identify key genes required for invadopodia formation and function in vivo.

  80. 80

    Hagedorn, E. J. et al. The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. J. Cell Biol. 201, 903–913 (2013).

  81. 81

    Murphy, D. A. & Courtneidge, S. A. The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011).

  82. 82

    Castro-Castro, A. et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu. Rev. Cell Dev. Biol. 32, 555–576 (2016).

  83. 83

    Foxall, E., Pipili, A., Jones, G. E. & Wells, C. M. Significance of kinase activity in the dynamic invadosome. Eur. J. Cell Biol. 95, 483–492 (2016).

  84. 84

    Pozzi, A., Yurchenco, P. D. & Iozzo, R. V. The nature and biology of basement membranes. Matrix Biol. 57–58, 1–11 (2017).

  85. 85

    Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204, 291–302 (2014).

  86. 86

    Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

  87. 87

    Kessenbrock, K., Wang, C.-Y. & Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 44–46, 184–190 (2015).

  88. 88

    Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

  89. 89

    Corcoran, A. & Del Maestro, R. F. Testing the “Go or Grow” hypothesis in human medulloblastoma cell lines in two and three dimensions. Neurosurgery 53, 174–184 (2003).

  90. 90

    Garay, T. et al. Cell migration or cytokinesis and proliferation? — revisiting the “go or grow” hypothesis in cancer cells in vitro. Exp. Cell Res. 319, 3094–3103 (2013).

  91. 91

    Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013).

  92. 92

    Giese, A. et al. Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67, 275–282 (1996).

  93. 93

    Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

  94. 94

    Man, Y.-G. et al. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J. Cancer 4, 84–95 (2013).

  95. 95

    Ewald, A. J. Pulling cells out of tumours. Nat. Cell Biol. 19, 147–149 (2017).

  96. 96

    Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

  97. 97

    Konen, J. et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8, 15078 (2017).

  98. 98

    Theveneau, E. & Mayor, R. Collective cell migration of epithelial and mesenchymal cells. Cell. Mol. Life Sci. 70, 3481–3492 (2013).

  99. 99

    Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014). This work demonstrates that circulating breast tumour cell clusters are more effective than single cells at colonizing distant sites.

  100. 100

    Grigore, A. D., Jolly, M. K., Jia, D., Farach-Carson, M. C. & Levine, H. Tumor budding: the name is EMT. Partial EMT. J. Clin. Med. 5, 51 (2016).

  101. 101

    Montell, D. J., Yoon, W. H. & Starz-Gaiano, M. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. Rev. Mol. Cell Biol. 13, 631–645 (2012).

  102. 102

    Montell, D. J., Rorth, P. & Spradling, A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71, 51–62 (1992). This paper establishes D. melanogaster border cells as a genetic model for studying collective epithelial cell motility in vivo.

  103. 103

    Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001). This work exploits the power of genetic screening in mosaic clones to show for the first time that JAK–STAT signalling is necessary and sufficient to activate motility within normal epithelial cells in vivo.

  104. 104

    Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14, 726–738 (2008).

  105. 105

    Yoon, W. H., Meinhardt, H. & Montell, D. J. miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat. Cell Biol. 13, 1062–1069 (2011).

  106. 106

    Silver, D. L., Naora, H., Liu, J., Cheng, W. & Montell, D. J. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res. 64, 3550–3558 (2004). This work demonstrates the role of STAT3 in cancer cell motility in vitro.

  107. 107

    Yue, P. et al. Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31, 2309–2322 (2012).

  108. 108

    Gu, L. et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. Relat. Cancer 17, 481–493 (2010).

  109. 109

    Moser, C. et al. STAT5b as molecular target in pancreatic cancer — inhibition of tumor growth, angiogenesis, and metastases. Neoplasia 14, 915–925 (2012).

  110. 110

    Niwa, Y. et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24, 6406–6417 (2005).

  111. 111

    Chuang, C.-H. et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat. Med. 23, 291–300 (2017).

  112. 112

    Teng, Y., Ross, J. L. & Cowell, J. K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 3, e28086 (2014).

  113. 113

    Kuzet, S.-E. & Gaggioli, C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 365, 607–619 (2016).

  114. 114

    Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10, 483–495 (2006).

  115. 115

    Duchek, P., Somogyi, K., Jékely, G., Beccari, S. & Rørth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

  116. 116

    McDonald, J. A., Pinheiro, E. M., Kadlec, L., Schupbach, T. & Montell, D. J. Multiple EGFR ligands participate in guiding migrating border cells. Dev. Biol. 296, 94–103 (2006).

  117. 117

    McDonald, J. A., Pinheiro, E. M. & Montell, D. J. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130, 3469–3478 (2003).

  118. 118

    Duchek, P. & Rørth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131–133 (2001).

  119. 119

    Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

  120. 120

    Ridley, A. J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 36, 103–112 (2015).

  121. 121

    Zegers, M. M. & Friedl, P. Rho GTPases in collective cell migration. Small GTPases 5, e28997 (2014).

  122. 122

    Wang, X., He, L., Wu, Y. I., Hahn, K. M. & Montell, D. J. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010).

  123. 123

    Fernández-Espartero, C. H. et al. GTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J. Cell Sci. 126, 2285–2293 (2013).

  124. 124

    Ramel, D., Wang, X., Laflamme, C., Montell, D. J. & Emery, G. Rab11 regulates cell-cell communication during collective cell movements. Nat. Cell Biol. 15, 317–324 (2013).

  125. 125

    Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

  126. 126

    Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 5, 355–366 (2005).

  127. 127

    Hou, J.-M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30, 525–532 (2012).

  128. 128

    Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

  129. 129

    Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

  130. 130

    Niewiadomska, P., Godt, D. & Tepass, U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999). This work demonstrates a surprising requirement for E-cadherin-mediated adhesion between border cells and nurse cells during border cell migration.

  131. 131

    Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014). This study uses sophisticated genetics and live imaging to show that E-cadherin serves three distinct positive roles in promoting collective direction-sensing during border cell migration.

  132. 132

    Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

  133. 133

    Cai, D. et al. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment. Proc. Natl Acad. Sci. USA 113, E2134–E2141 (2016).

  134. 134

    Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

  135. 135

    Reinhold, W. C. et al. Multifactorial regulation of E-cadherin expression: an integrative study. Mol. Cancer Ther. 9, 1–16 (2010).

  136. 136

    Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920–6929 (2008).

  137. 137

    Jolly, M. K., Ware, K. E., Gilja, S., Somarelli, J. A. & Levine, H. EMT and MET: necessary or permissive for metastasis? Mol. Oncol. 11, 755–769 (2017).

  138. 138

    Rodriguez, F. J., Lewis-Tuffin, L. J. & Anastasiadis, P. Z. E-Cadherin's dark side: possible role in tumor progression. Biochim. Biophys. Acta 1826, 23–31 (2012).

  139. 139

    Shamir, E. R. et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J. Cell Biol. 204, 839–856 (2014).

  140. 140

    Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).

  141. 141

    Sallak, Y., Torres, A. Y., Yin, H. & Montell, D. Src42A required for collective border cell migration in vivo. bioRxiv https://doi.org/10.1101/186049 (2017).

  142. 142

    Serrels, A., Canel, M., Brunton, V. G. & Frame, M. C. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh. Migr. 5, 360–365 (2011).

  143. 143

    Cai, D. & Montell, D. J. Diverse and dynamic sources and sinks in gradient formation and directed migration. Curr. Opin. Cell Biol. 30, 91–98 (2014).

  144. 144

    Pocha, S. M. & Montell, D. J. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu. Rev. Genet. 48, 295–318 (2014).

  145. 145

    Kunwar, P. S., Siekhaus, D. E. & Lehmann, R. In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265 (2006).

  146. 146

    Bae, Y.-K., Trisnadi, N., Kadam, S. & Stathopoulos, A. The role of FGF signaling in guiding coordinate movement of cell groups: guidance cue and cell adhesion regulator? Cell Adh. Migr. 6, 397–403 (2012).

  147. 147

    Ratheesh, A., Belyaeva, V. & Siekhaus, D. E. Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Curr. Opin. Cell Biol. 36, 71–79 (2015).

  148. 148

    Evans, I. R. & Wood, W. Drosophila blood cell chemotaxis. Curr. Opin. Cell Biol. 30, 1–8 (2014).

  149. 149

    Trisnadi, N. & Stathopoulos, A. Ectopic expression screen identifies genes affecting Drosophila mesoderm development including the HSPG Trol. G3 5, 301–313 (2015).

  150. 150

    Heisenberg, C.-P. Dorsal closure in Drosophila: cells cannot get out of the tight spot. Bioessays 31, 1284–1287 (2009).

  151. 151

    Andrew, D. J. & Ewald, A. J. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev. Biol. 341, 34–55 (2010).

  152. 152

    Bischoff, M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev. Biol. 363, 179–190 (2012).

  153. 153

    Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978). This study establishes D. melanogaster as a tumour model and demonstrates that mutations can cause neoplasms in this organism.

  154. 154

    Elsum, I., Yates, L., Humbert, P. O. & Richardson, H. E. The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem. 53, 141–168 (2012).

  155. 155

    Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

  156. 156

    Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

  157. 157

    Campanale, J. P., Sun, T. Y. & Montell, D. J. Development and dynamics of cell polarity at a glance. J. Cell Sci. 130, 1201–1207 (2017).

  158. 158

    Halaoui, R. & McCaffrey, L. Rewiring cell polarity signaling in cancer. Oncogene 34, 939–950 (2015).

  159. 159

    Feigin, M. E. et al. Mislocalization of the cell polarity protein scribble promotes mammary tumorigenesis and is associated with basal breast cancer. Cancer Res. 74, 3180–3194 (2014).

  160. 160

    Lin, W.-H., Asmann, Y. W. & Anastasiadis, P. Z. Expression of polarity genes in human cancer. Cancer Inform. 14, 15–28 (2015).

  161. 161

    Vaira, V. et al. Aberrant overexpression of the cell polarity module scribble in human cancer. Am. J. Pathol. 178, 2478–2483 (2011).

  162. 162

    Zhan, L. et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135, 865–878 (2008).

  163. 163

    Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

  164. 164

    Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

  165. 165

    Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 22, 5769–5779 (2003). References 164 and 165 establish D. melanogaster as a model for genetic screening for mutations that promote the spread of cells expressing oncogenic Ras or Notch throughout the fly larva.

  166. 166

    Wu, M., Pastor-Pareja, J. C. & Xu, T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463, 545–548 (2010).

  167. 167

    Chi, C. et al. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J. Biol. Chem. 285, 21817–21823 (2010).

  168. 168

    Dhanasekaran, D. N. & Reddy, E. P. JNK signaling in apoptosis. Oncogene 27, 6245–6251 (2008).

  169. 169

    Leong, G. R., Goulding, K. R., Amin, N., Richardson, H. E. & Brumby, A. M. Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol. 7, 62 (2009).

  170. 170

    Igaki, T., Pagliarini, R. A. & Xu, T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr. Biol. 16, 1139–1146 (2006).

  171. 171

    Sun, G. & Irvine, K. D. Ajuba family proteins link JNK to Hippo signaling. Sci. Signal. 6, ra81 (2013).

  172. 172

    Rudrapatna, V. A., Bangi, E. & Cagan, R. L. Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep. 14, 172–177 (2013).

  173. 173

    Chen, F. JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res. 72, 379–386 (2012).

  174. 174

    Read, R. D. et al. A Drosophila model of multiple endocrine neoplasia type 2. Genetics 171, 1057–1081 (2005). This study establishes that D. melanogaster , improbably, serves as a model for multiple endocrine neoplasia type 2 (MEN2).

  175. 175

    Das, T. K. & Cagan, R. L. A. Drosophila approach to thyroid cancer therapeutics. Drug Discov. Today Technol. 10, e65–71 (2013).

  176. 176

    Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012). This study demonstrates the power of D. melanogaster to identify a kinase inhibitor that when used in combination with inhibitors of other targets renders it more effective and safer than another drug already in clinical use for MEN2.

  177. 177

    Sonoshita, M. & Cagan, R. L. Modeling human cancers in drosophila. Curr. Top. Dev. Biol. 121, 287–309 (2017).

  178. 178

    Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47–55 (2015).

  179. 179

    Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015). References 178 and 179 show that D. melanogaster can model systemic features such as cachexia.

  180. 180

    Petrie, R. J. & Yamada, K. M. Multiple mechanisms of 3D migration: the origins of plasticity. Curr. Opin. Cell Biol. 42, 7–12 (2016).

  181. 181

    Zatulovskiy, E., Tyson, R., Bretschneider, T. & Kay, R. R. Bleb-driven chemotaxis of Dictyostelium cells. J. Cell Biol. 204, 1027–1044 (2014).

  182. 182

    Liu, Y.-J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

  183. 183

    Harvie, E. A. & Huttenlocher, A. Neutrophils in host defense: new insights from zebrafish. J. Leukoc. Biol. 98, 523–537 (2015).

  184. 184

    Paksa, A. & Raz, E. Zebrafish germ cells: motility and guided migration. Curr. Opin. Cell Biol. 36, 80–85 (2015).

  185. 185

    Blaser, H. et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118, 4027–4038 (2005).

  186. 186

    Meyen, D. et al. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. elife 4, e05279 (2015).

  187. 187

    Dumstrei, K., Mennecke, R. & Raz, E. Signaling pathways controlling primordial germ cell migration in zebrafish. J. Cell Sci. 117, 4787–4795 (2004).

  188. 188

    Blaser, H. et al. Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11, 613–627 (2006).

  189. 189

    Tarbashevich, K., Reichman-Fried, M., Grimaldi, C. & Raz, E. Chemokine-dependent pH elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells. Curr. Biol. 25, 1096–1103 (2015).

  190. 190

    Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008).

  191. 191

    Bereiter-Hahn, J., Lück, M., Miebach, T., Stelzer, H. K. & Vöth, M. Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J. Cell Sci. 96, 171–188 (1990).

  192. 192

    Diz- Muñoz, A. et al. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol. 14, 74 (2016).

  193. 193

    Balzer, E. M. et al. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045–4056 (2012).

  194. 194

    Stroka, K. M. & Konstantopoulos, K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol, Cell Physiol. 306, C98–C109 (2014).

  195. 195

    Ignatius, M. S., Hayes, M. & Langenau, D. M. In vivo imaging of cancer in zebrafish. Adv. Exp. Med. Biol. 916, 219–237 (2016).

  196. 196

    Spaink, H. P. et al. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 62, 246–254 (2013).

  197. 197

    Taylor, A. M. & Zon, L. I. Zebrafish tumor assays: the state of transplantation. Zebrafish 6, 339–346 (2009).

  198. 198

    Zhao, S., Huang, J. & Ye, J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res. 34, 80 (2015).

  199. 199

    Starnes, T. W. & Huttenlocher, A. Neutrophil reverse migration becomes transparent with zebrafish. Adv. Hematol. 2012, 398640 (2012).

  200. 200

    White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008). This paper discusses the use of transparent zebrafish as a xenograft model that allows visualization of tumour spread.

  201. 201

    White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624–636 (2013).

  202. 202

    Moore, J. C. et al. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J. Exp. Med. 213, 2575–2589 (2016).

  203. 203

    Tang, Q. et al. Optimized cell transplantation using adult rag2 mutant zebrafish. Nat. Methods 11, 821–824 (2014).

  204. 204

    Drabsch, Y., Snaar-Jagalska, B. E. & Dijke, P. Fish tales: The use of zebrafish xenograft human cancer cell models. Histol. Histopathol. 32, 673–686 (2017).

  205. 205

    Mercatali, L. et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int. J. Mol. Sci. 17, E1375 (2016). This paper demonstrates that patient-derived tumour tissue can be transplanted into zebrafish and that the behaviour of these xenografts reflects the clinical course of the patients' disease.

  206. 206

    Gaudenzi, G. et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 57, 214–219 (2016).

  207. 207

    Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. & Klemke, R. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc. Natl Acad. Sci. USA 104, 17406–17411 (2007).

  208. 208

    Reymond, N. et al. RhoC and ROCKs regulate cancer cell interactions with endothelial cells. Mol. Oncol. 9, 1043–1055 (2015).

  209. 209

    Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

  210. 210

    Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

  211. 211

    Stoletov, K. et al. Visualizing extravasation dynamics of metastatic tumor cells. J. Cell Sci. 123, 2332–2341 (2010).

  212. 212

    Hagedorn, E. J. et al. Integrin acts upstream of netrin signaling to regulate formation of the anchor cell's invasive membrane in C. elegans. Dev. Cell 17, 187–198 (2009).

  213. 213

    Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O. & Kamm, R. D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524 (2016).

  214. 214

    Reymond, N. et al. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J. Cell Biol. 199, 653–668 (2012).

  215. 215

    Pagès, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2010).

  216. 216

    Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

  217. 217

    Roh-Johnson, M. et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33, 4203–4212 (2014).

  218. 218

    Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

  219. 219

    Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

  220. 220

    Robinson, B. D. et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res. 15, 2433–2441 (2009).

  221. 221

    He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

  222. 222

    Wang, J. et al. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 75, 306–315 (2015).

  223. 223

    Fior, R. et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc. Natl Acad. Sci. USA 114, E8234–E8243 (2017).

  224. 224

    Mezawa, Y. & Orimo, A. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas. Cell Tissue Res. 365, 675–689 (2016).

  225. 225

    Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002). This paper supports the view that genes that drive tumour initiation and progression may overlap substantially.

  226. 226

    Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

  227. 227

    Kodura, M. A. & Souchelnytskyi, S. Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases. Cancer Metastasis Rev. 34, 611–618 (2015).

  228. 228

    Nguyen, D. X. & Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8, 341–352 (2007).

  229. 229

    Nguyen, D. X., Bos, P. D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009). This paper proposes the view that metastasis genes can be identified.

  230. 230

    Meehan, W. J. et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J. Biol. Chem. 279, 1562–1569 (2004).

  231. 231

    Horak, C. E. et al. Nm23-H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res. 67, 11751–11759 (2007).

  232. 232

    Sahni, S. et al. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J. Biol. Chem. 289, 9692–9709 (2014).

  233. 233

    Wessels, D., Lusche, D. F., Kuhl, S., Heid, P. & Soll, D. R. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J. Cell Sci. 120, 2517–2531 (2007).

  234. 234

    Lee, T. & Montell, D. J. Multiple Ras signals pattern the Drosophila ovarian follicle cells. Dev. Biol. 185, 25–33 (1997).

  235. 235

    Dang, T. T., Prechtl, A. M. & Pearson, G. W. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion. Cancer Res. 71, 6857–6866 (2011).

  236. 236

    Westcott, J. M. et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J. Clin. Invest. 125, 1927–1943 (2015).

  237. 237

    Edme, N., Downward, J., Thiery, J.-P. & Boyer, B. Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J. Cell Sci. 115, 2591–2601 (2002).

  238. 238

    Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

  239. 239

    Tsuji, T., Ibaragi, S. & Hu, G. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 69, 7135–7139 (2009).

  240. 240

    Riihimäki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

  241. 241

    Entenberg, D. et al. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital 4, e1086613 (2015).

  242. 242

    Ramakrishna, R. & Rostomily, R. Seed, soil, and beyond: the basic biology of brain metastasis. Surg. Neurol. Int. 4, S256–S264 (2013).

  243. 243

    Ren, G., Esposito, M. & Kang, Y. Bone metastasis and the metastatic niche. J. Mol. Med. 93, 1203–1212 (2015).

  244. 244

    Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

  245. 245

    Avgustinova, A. et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat. Commun. 7, 10305 (2016).

  246. 246

    Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

  247. 247

    Melero, I., Rouzaut, A., Motz, G. T. & Coukos, G. T-Cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4, 522–526 (2014).

  248. 248

    Senbabaoglu, Y. et al. The landscape of T cell infiltration in human cancer and its association with antigen presenting gene expression. bioRxiv https://doi.org/10.1101/025908 (2015).

  249. 249

    Nakaya, Y. & Sheng, G. EMT in developmental morphogenesis. Cancer Lett. 341, 9–15 (2013).

  250. 250

    Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

  251. 251

    Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

  252. 252

    Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015). References 251 and 252 show that, in contrast to established dogma, EMT is not necessary for metastasis of lung or pancreatic cancers but rather confers chemoresistance.

  253. 253

    Steinestel, K., Eder, S., Schrader, A. J. & Steinestel, J. Clinical significance of epithelial-mesenchymal transition. Clin. Transl Med. 3, 17 (2014).

  254. 254

    Bronsert, P. et al. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. J. Pathol. 234, 410–422 (2014).

Download references


The authors thank their anonymous reviewers for helpful suggestions and careful reading of the manuscript. This work was funded by the Intramural Research Program, National Cancer Institute, National Institutes of Health, by internal funding from the University of Michigan to C.A.P and by NIH grants R01GM73164 and R01GM46425 to D.J.M.

Author information

D.J.M. wrote the sections on Caenorhabditis elegans and Drosophila melanogaster. C.A.P and C.H.S. wrote the sections on Dictyostelium discoideum and zebrafish. All authors contributed equally to writing the other parts of the article and reviewing and/or editing the manuscript before submission.

Correspondence to Carole A. Parent or Denise J. Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links



PowerPoint slides



A quasi-two-dimensional structure localized at the leading edge of motile cells that contains a highly dynamic actin network.


A structure containing stable actin filaments and mature adhesion sites localized just behind the lamellipodium.

Basement membrane

A thin, fibrous membrane that separates epithelium, mesothelium or endothelium from the underlying stroma.


A family of low molecular mass proteins that are secreted by various cells and regulate a variety of responses, including cell migration, morphogenesis and proliferation as well as angiogenesis by binding to G protein-coupled receptors.

Matrix metalloproteinase

(MMP). Calcium-dependent, zinc-containing endopeptidases that degrade matrix proteins.


An embryonic tissue layer that differentiates into mesoderm and endoderm.

Directional persistence

A measure commonly defined as the ratio of displacement to trajectory length.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stuelten, C., Parent, C. & Montell, D. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 18, 296–312 (2018) doi:10.1038/nrc.2018.15

Download citation

Further reading