Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-coding RNA networks in cancer

Key Points

  • Non-coding RNAs (ncRNAs) participate in complex networks of interactions with other nucleic acids and proteins that often have wide-reaching effects on cell biology.

  • The mechanisms by which ncRNAs work and/or function are routinely dysregulated in various cancers.

  • Dysregulation of ncRNA interactions within cancer molecular pathways contributes to cancer and reveals important new targets for intervention.

  • In cancer, disruptions in ncRNA networks often do not involve just mutations that cause a gross gain-of-function or loss-of-function of a given ncRNA but can also involve mutations that change the sequence and downstream targets of that ncRNA.

Abstract

Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motifs in RNA networks.
Figure 2: Recurrent patterns of ncRNA function in cancer networks.
Figure 3: Putative functions of circular RNAs in cancer.
Figure 4: Adenosine-to-inosine editing of a tumour-suppressor gene or an oncogene.

Similar content being viewed by others

References

  1. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    CAS  PubMed  Google Scholar 

  3. Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Johnsson, P., Lipovich, L., Grandér, D. & Morris, K. V. Evolutionary conservation of long noncoding RNAs; sequence, structure, function. Biochim. Biophys. Acta 1840, 1063–1071 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636 (2004).

  10. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yamamura, S., Imai-Sumida, M., Tanaka, Y. & Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-017-2626-6 (2017).

  12. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kasinski, A. L. & Slack, F. J. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849–864 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Qu, L. et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nature Commun. 7, 12692 (2016).

    Article  CAS  Google Scholar 

  17. Mihailovich, M. et al. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth. Nature Commun. 6, 8725 (2015).

    Article  CAS  Google Scholar 

  18. Svoronos, A. A., Engelman, D. M. & Slack, F. J. OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 76, 3666–3670 (2016). This is an excellent review of the dual role of miRNAs in cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pekarsky, Y. & Croce, C. M. Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget 1, 224–227 (2010). This article represents one of the first examples of the dualistic function of a miRNA in the same or in different types of cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anastasiadou, E. et al. Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene 29, 1316–1328 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Costa-Pinheiro, P. et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin. Epigenet. 7, 42 (2015).

    Article  CAS  Google Scholar 

  22. Di Leva, G. et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 9, e1003311 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mercer, T. R. et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 1639–1650 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Beermann, J., Piccoli, M. T., Viereck, J. & Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Williamson, L. et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855.e13 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  27. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Veronese, A. et al. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res. 70, 3140–3149 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ladewig, E., Okamura, K., Flynt, A. S., Westholm, J. O. & Lai, E. C. Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res. 22, 1634–1645 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Chan, W. L. et al. Transcribed pseudogene psiPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res. 41, 3734–3747 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wilusz, J. E. et al. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26, 2392–2407 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Brown, J. A., Valenstein, M. L., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc. Natl Acad. Sci. USA 109, 19202–19207 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gast, M. et al. Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. J. Mol. Cell Biol. 8, 178–181 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kumar, P., Kuscu, C. & Dutta, A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41, 679–689 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cole, C. et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Maute, R. L. et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1404–1409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, Q. et al. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther. 21, 368–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pekarsky, Y. et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc. Natl Acad. Sci. USA 113, 5071–5076 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Olvedy, M. et al. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget 7, 24766–24777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2016).

    Article  CAS  Google Scholar 

  48. Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007). This is one of three articles that demonstrate the various gene products made from the single H19 locus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yoshimizu, T. et al. The H19 locus acts in vivo as a tumor suppressor. Proc. Natl Acad. Sci. USA 105, 12417–12422 (2008).

    Article  CAS  Google Scholar 

  50. Zhou, J. et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat. Commun. 6, 10221 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Du, Z. et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol. 20, 908–913 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhou, W. et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci. Signal. 10, eaak9557 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Deng, Q. et al. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS ONE 9, e103022 (2014). This is one of three articles that demonstrate the various gene products made from the single H19 locus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Onyango, P. & Feinberg, A. P. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc. Natl Acad. Sci. USA 108, 16759–16764 (2011). This is one of three articles that demonstrate the various gene products made from the single H19 locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu, M. et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 281, 3766–3775 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. He, D. et al. Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol. Cancer 14, 73 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Vennin, C. et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 6, 29209–29223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, H. et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget 6, 31958–31984 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ferre, F., Colantoni, A. & Helmer-Citterich, M. Revealing protein-lncRNA interaction. Brief. Bioinform. 17, 106–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Alberts, B. et al. Molecular Biology of the Cell 4 edn (Garland Science, 2002).

    Google Scholar 

  64. Sánchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010). This study provides an example of a lncRNA that alters the occupancy of a protein complex on chromatin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hu, P. et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget 6, 32410–32425 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Montes, M. et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat. Commun. 6, 6967 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang, Y. et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Stem Cell 16, 413–425 (2015).

    CAS  Google Scholar 

  72. Arab, K. et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A Mol. Cell 55, 604–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A. ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brown, B. D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Karreth, F. A. et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Li, J. et al. Computational prediction of microRNA networks incorporating environmental toxicity and disease etiology. Sci. Rep. 4, 5576 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sarver, A. L. & Subramanian, S. Competing endogenous RNA database. Bioinformation 8, 731–733 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang, Z. et al. dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11 (Suppl. 4), S5 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chiu, H. S. et al. Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res. 25, 257–267 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Das, S., Ghosal, S., Sen, R. & Chakrabarti, J. lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS ONE 9, e98965 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ohtsuka, M., Ling, H., Doki, Y., Mori, M. & Calin, G. A. MicroRNA processing and human cancer. J. Clin. Med. 4, 1651–1667 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Karreth, F. A. et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161, 319–332 (2015). This study provides an example of a lncRNA that acts as sponge to sequester miRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Li, F. et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6, 6001–6013 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Okuda, H. et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 73, 1434–1444 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hansen, T. B., Kjems, J. & Damgaard, C. K. Circular RNA and miR-7 in cancer. Cancer Res. 73, 5609–5612 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Weng, W. et al. Circular RNA ciRS-7 - A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.ccr-16-2541 (2017). This study unravels the functional role of the ciRS-7 sponging effect on the tumour suppressor miR-7 in colorectal cancer.

  99. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012). This study provides an example of a lncRNA that binds to and affects the translation of mRNAs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ryu, S. et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23, 63–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Damas, N. D. et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat. Commun. 7, 13875 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yuan, J. H. et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat. Cell Biol. 19, 820–832 (2017). This study provides an example of a lncRNA binding to an mRNA and blocking access to a miRNA.

    Article  CAS  PubMed  Google Scholar 

  107. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 169, 1187–1200 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Esteller, M. & Pandolfi, P. P. The epitranscriptome of noncoding RNAs in cancer. Cancer Discov. 7, 359–368 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 166, 1055–1056 (2016). This is an important study that reveals that aberrant translocations observed in various types of cancer may generate fusion circRNAs.

    Article  CAS  PubMed  Google Scholar 

  110. dos Santos, G. A., Kats, L. & Pandolfi, P. P. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J. Exp. Med. 210, 2793–2802 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Martelli, M. P. et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am. J. Pathol. 174, 661–670 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nishikura, K. A-To-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Kim, D. D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Daniel, C., Lagergren, J. & Ohman, M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie 117, 22–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Zinshteyn, B. & Nishikura, K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 202–209 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zhang, L., Yang, C. S., Varelas, X. & Monti, S. Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci. Rep. 6, 23226 (2016). This interesting article suggests that changes to the editing process of miRNA target genes might be selected for as advantageous to cancer cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ota, H. et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153, 575–589 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tomaselli, S. et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol. 16, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Shoshan, E. et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 17, 311–321 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Anadon, C. et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35, 4407–4413 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Zipeto, M. A. et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell 19, 177–191 (2016). This article describes the inhibitory mechanism of let-7 biogenesis by ADAR1 editase activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zhang, W. C. & Slack, F. J. ADARs edit microRNAs to promote leukemic stem cell activity. Cell Stem Cell 19, 141–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27, 2380–2396 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009). This is an important study about the 3′UTR shortening process in cancer cells as a mechanism to avoid inhibition of oncogenes by miRNAs.

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Preskill, C. & Weidhaas, J. B. SNPs in microRNA binding sites as prognostic and predictive cancer biomarkers. Crit. Rev. Oncog. 18, 327–340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yu, Z. et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res. 35, 4535–4541 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chin, L. J. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wynendaele, J. et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 70, 9641–9649 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, M., Kogan, N. & Slack, F. J. Cis-acting elements in its 3′ UTR mediate post-transcriptional regulation of KRAS. Oncotarget 7, 11770–11784 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Zheng, J. et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat. Genet. 48, 747–757 (2016). This paper provides an example of a SNP in a lncRNA that creates a binding site for a miRNA.

    Article  CAS  PubMed  Google Scholar 

  133. Bozic, I., Allen, B. & Nowak, M. A. Dynamics of targeted cancer therapy. Trends Mol. Med. 18, 311–316 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bozic, I. & Nowak, M. A. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc. Natl Acad. Sci. USA 111, 15964–15968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamberg, M. et al. miRTargetLink—miRNAs, genes and interaction networks. Int. J. Mol. Sci. 17, 564 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wang, P. et al. Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res. 43, 3478–3489 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. [No authors listed.] The future of cancer genomics. Nat. Med. 21, 99–99 (2015).

  139. Tomczak, K., Czerwin´ska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68–A77 (2015).

    Google Scholar 

  140. Goswami, C. P. & Nakshatri, H. PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. J. Clin. Bioinforma. 2, 23 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Bhattacharya, A. & Cui, Y. SomamiR 2.0: a database of cancer somatic mutations altering microRNA-ceRNA interactions. Nucleic Acids Res. 44, D1005–D1010 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Blin, K. et al. DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 43, D160–D167 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Vlachos, I. S. et al. DIANA-mirExTra v2.0: uncovering microRNAs and transcription factors with crucial roles in NGS expression data. Nucleic Acids Res. 44, W128–W134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Chen, X. et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6, 34985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Glazar, P., Papavasileiou, P. & Rajewsky, N. circBase: a database for circular RNAs. RNA 20, 1666–1670 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Lopez, J. P. et al. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med. Genomics 8, 35 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Yarmishyn, A. A. & Kurochkin, I. V. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front. Genet. 6, 145 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Ho, T.-T. et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 43, e17 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discov. 16, 167–179 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Bak, R. O., Hollensen, A. K. & Mikkelsen, J. G. Managing microRNAs with vector-encoded decoy-type inhibitors. Mol. Ther. 21, 1478–1485 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Chen, Y., Gao, D.-Y. & Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Fatima, R., Akhade, V. S., Pal, D. & Rao, S. M. R. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol. Cell. Therap. 3, 5 (2015).

    Article  Google Scholar 

  153. Babar, I. A. et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl Acad. Sci. USA 109, E1695–E1704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cheng, C. J. et al. MicroRNA silencing for cancer therapy targeted to the tumor microenvironment. Nature 518, 107–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Diaz-Lagares, A. et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc. Natl Acad. Sci. USA 113, E7535–E7544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lujambio, A. et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29, 6390–6401 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. He, D. X. et al. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer. Sci. Rep. 6, 24706 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Boeckel, J. N. et al. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ. Res. 117, 884–890 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. L. Jiao and P. Trivedi for helpful comments on this manuscript. The authors acknowledge support from the Ludwig Center at Harvard, Boston, Massachusetts, USA, and grants from the US National Institutes of Health (R01 CA157749; P50 CA177444).

Author information

Authors and Affiliations

Authors

Contributions

E.A. and L.S.J. researched the data for the article. E.A., L.S.J. and F.J.S. provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frank J. Slack.

Ethics declarations

Competing interests

F.J.S. is a founder and adviser to Mira Dx and 28/7 Rx. The other authors have no conflict of interest.

PowerPoint slides

Glossary

Network motifs

Patterns of interactions between nodes in a network that occur more often than by chance.

Supergene

A locus that produces multiple functional RNAs.

Endogenous small interfering RNAs

(Endo-siRNAs). Small RNAs that, unlike microRNAs, are derived from perfectly complementary sense–antisense RNA hybrids (double-stranded RNA).

Mirtrons

MicroRNAs derived from short hairpin introns and processed by the splicing machinery but not by ribonuclease 3 (Drosha).

Pseudogene

A nucleotide sequence that resembles a gene but does not lead to any protein expression.

Nuclear paraspeckles

Nuclear domains within interchromatin spaces, enriched in RNA processing factors.

Crosslinking immunoprecipitation followed by sequencing

(CLIP-seq). A method to study RNA–protein interactions by ultraviolet crosslinking followed by immunoprecipitation.

Staufen1-mediated mRNA decay

(SMD). A process that degrades mRNA through binding of double-stranded RNA-binding protein Staufen homologue 1 (STAU1) to its binding site in the 3′ untranslated regions of target mRNA.

Alu element

A short interspersed element, 300 bp in length, that is repeated in the human genome and forms a characteristic double-stranded RNA embedded in the precursor mRNA.

Alternative polyadenylation signals

When more than one site within a gene locus codes for the signal that allows a string of adenosine bases (poly(A) tail) to be added to the end of the transcript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastasiadou, E., Jacob, L. & Slack, F. Non-coding RNA networks in cancer. Nat Rev Cancer 18, 5–18 (2018). https://doi.org/10.1038/nrc.2017.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.99

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer