Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting immunosuppressive adenosine in cancer

A Corrigendum to this article was published on 01 December 2017

This article has been updated

Key Points

  • The adenosinergic pathway encompasses ectonucleotidases (CD39 and CD73) and adenosine receptors (A1R, A2AR, A2BR and A3R) that participate in the generation and signalling of adenosine in the tumour microenvironment (TME), respectively. Of the four adenosine receptors, the cyclic AMP (cAMP)-activating receptors A2AR and A2BR predominantly exert immunosuppressive functions in the TME.

  • Molecules of this pathway are regulated by several immunogenic and genetic drivers. Of these, hypoxia and transforming growth factor-β (TGFβ) represent the key drivers of the adenosinergic pathway.

  • Within a tumour niche, adenosinergic molecules are expressed by tumour cells, stromal cells and immune cells, and their critical point of action is not yet fully understood.

  • Adenosine, through activation of cAMP, can directly regulate tumour proliferation, survival, adhesion and migration. In immune cells, adenosine molecules greatly hamper vital immune effector cell functions and may be involved in mediating T cell exhaustion.

  • Novel antibodies and small molecules targeted to members of the adenosinergic pathway are now reaching clinical trials in patients with advanced cancer and may be combined with standard-of-care therapies and novel immunotherapies.

Abstract

Despite the success of anti-programmed cell death protein 1 (PD1), anti-PD1 ligand 1 (PDL1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) therapies in advanced cancer, a considerable proportion of patients remain unresponsive to these treatments (known as innate resistance). In addition, one-third of patients relapse after initial response (known as adaptive resistance), which suggests that multiple non-redundant immunosuppressive mechanisms coexist within the tumour microenvironment. A major immunosuppressive mechanism is the adenosinergic pathway, which now represents an attractive new therapeutic target for cancer therapy. Activation of this pathway occurs within hypoxic tumours, where extracellular adenosine exerts local suppression through tumour-intrinsic and host-mediated mechanisms. Preclinical studies in mice with adenosine receptor antagonists and antibodies have reported favourable antitumour immune responses with some definition of the mechanism of action. Currently, agents targeting the adenosinergic pathway are undergoing first-in-human clinical trials as single agents and in combination with anti-PD1 or anti-PDL1 therapies. In this Review, we describe the complex interplay of adenosine and adenosine receptors in the development of primary tumours and metastases and discuss the merits of targeting one or more components that compose the adenosinergic pathway. We also review the early clinical data relating to therapeutic agents inhibiting the adenosinergic pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adenosine generation and signalling.
Figure 2: Effect of adenosinergic molecules on the tumour and surrounding stroma.
Figure 3: Adenosine-mediated immunosuppression in the tumour microenvironment.
Figure 4: Regulation of adenosinergic molecules in the tumour microenvironment.
Figure 5: Co-targeting members of the adenosinergic pathway to facilitate lymphocyte-mediated cytotoxicity.
Figure 6: Potential for targeting adenosinergic molecules to synergize with other cancer therapies.

Similar content being viewed by others

Change history

  • 22 November 2017

    When the article was initially published online, reference 80 was incorrectly listed in the reference list. This has now been corrected in the print and online versions of the article.

References

  1. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl Med. 7, 277ra30 (2015). This is a landmark paper that elegantly demonstrates that respiratory hyperoxia can provide a therapeutic benefit in cancer by preventing hypoxia and subsequent adenosine production, thus boosting antitumour immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hatfield, S. M. et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 92, 1283–1292 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664–3671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer. 9, 539–549 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Busse, M. & Vaupel, P. Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52, 469–473 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Blay, J., White, T. D. & Hoskin, D. W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602–2605 (1997).

    CAS  PubMed  Google Scholar 

  7. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Ohta, A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ruiz, M. L., Lim, Y.-H. & Zheng, J. Adenosine A2A receptors as drug discovery target. J. Med. Chem. 57, 3623–3650 (2014).

    Article  CAS  Google Scholar 

  10. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001). This is the first study demonstrating the role of adenosine, A2AR and cAMP in the immune responses to autoimmunity and viral hepatitis and, importantly, paved the way for future investigations into the role of A2AR as a potential cancer immunotherapeutic target.

    Article  CAS  PubMed  Google Scholar 

  11. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006). This is the first study to provide genetic and pharmacological evidence of how A2AR expression in T cells regulates tumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vecchio, E. A. et al. Ligand-independent adenosine A2B receptor constitutive activity as a promoter of prostate cancer cell proliferation. J. Pharmacol. Exp. Ther. 357, 36–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Cronstein, B. N. et al. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J. Immunol. 148, 2201–2206 (1992).

    CAS  PubMed  Google Scholar 

  14. Butler, M. et al. Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur. J. Immunol. 42, 3358–3368 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Allard, D., Allard, B., Gaudreau, P. O., Chrobak, P. & Stagg, J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 8, 145–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Young, A., Mittal, D., Stagg, J. & Smyth, M. J. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 4, 879–888 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cekic, C., Day, Y. J., Sag, D. & Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014). This study shows that tumour-associated myeloid cells all express immunosuppressive A2AR, which is a potential target of adenosine receptor inhibitors to improve immune control of tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Young, A. et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell. 30, 391–403 (2016). The non-redundant nature of adenosinergic molecules is tested in this study for the first time and highlights the potential to co-target CD73 and A2AR molecules in cancer treatment.

    Article  CAS  PubMed  Google Scholar 

  21. Mittal, D. et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res. 76, 4372–4382 (2016). This is a critical paper that thoroughly delineates host and tumour-intrinsic roles of A2BR in the progression of metastasis through the use of A2BR- deficient mice and A2BR-knockdown tumour cells.

    Article  CAS  PubMed  Google Scholar 

  22. Ryzhov, S. et al. Host A2B adenosine receptors promote carcinoma growth. Neoplasia 10, 987–995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stagg, J. et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 71, 2892–2900 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bastid, J. et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol. Res. 3, 254–265 (2015). This is an insightful study that thoroughly characterizes the expression of CD39 across several human tumours and cancer cell lines.

    Article  CAS  PubMed  Google Scholar 

  25. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Figueiro, F. et al. Phenotypic and functional characteristics of CD39high human regulatory B cells (Breg). Oncoimmunology 5, e1082703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ryzhov, S. V. et al. Role of TGF-β signaling in generation of CD39+CD73+ myeloid cells in tumors. J. Immunol. 193, 3155–3164 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta, P. K. et al. CD39 Expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010). This paper shows that CD39 expression on regulatory T cells inhibits NK cell activity and is permissive for metastatic growth.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson, S. W. et al. Disordered purinergic signaling inhibits pathological angiogenesis in Cd39/Entpd1-null mice. Am. J. Pathol. 171, 1395–1404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vijayan, D. et al. Selective activation of anti-CD73 mechanisms in control of primary tumors and metastases. Oncoimmunology 6, e1312044 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stagg, J. et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 72, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017). The potential to use the combination of CAR T cells with A2AR inhibition is demonstrated in this study.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652–3658 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Waickman, A. T. et al. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol. Immunother. 61, 917–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ohta, A. & Sitkovsky, M. Extracellular adenosine-mediated modulation of regulatory T cells. Front. Immunol. 5, 304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Iannone, R., Miele, L., Maiolino, P., Pinto, A. & Morello, S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15, 1400–1409 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 6, 27478–27489 (2015). This study shows the effect of A2BR inhibition on myeloid cells and angiogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Young, A. et al. Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis. Cancer Res. 77, 4684–4696 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02403193 (2016).

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02655822 (2017).

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02740985 (2017).

  44. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02503774 (2017).

  45. Biswas, S. K. Metabolic reprogramming of immune cells in cancer progression. Immunity 43, 435–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tak, E. et al. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure. Toxicol. Appl. Pharmacol. 314, 72–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K. & Colgan, S. P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20, 2242–2250 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Klein, M. & Bopp, T. Cyclic AMP represents a crucial component of Treg cell-mediated immune regulation. Front. Immunol. 7, 315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang, P. et al. MicroRNA-128b suppresses tumor growth and promotes apoptosis by targeting A2bR in gastric cancer. Biochem. Biophys. Res. Commun. 467, 798–804 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Morello, S. et al. IL-1β and TNF-α regulation of the adenosine receptor (A2A) expression: differential requirement for NF-κB binding to the proximal promoter. J. Immunol. 177, 7173–7183 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Inoue, Y. et al. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget 8, 8738–8751 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Jin, D. et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70, 2245–2255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhi, X. et al. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis 24, 439–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Turcotte, M. et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 75, 4494–4503 (2015). This study highlights a role for CD73 as a prognostic marker of patient survival and as a candidate therapeutic target in advanced serous ovarian cancers.

    Article  CAS  PubMed  Google Scholar 

  59. Sadej, R., Spychala, J. & Skladanowski, A. C. Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res. 16, 213–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Terp, M. G. et al. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J. Immunol. 191, 4165–4173 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, L. et al. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol. 134, 365–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Merighi, S. et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol. 119, 923–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Etique, N., Grillier-Vuissoz, I., Lecomte, J. & Flament, S. Crosstalk between adenosine receptor (A2A isoform) and ERα mediates ethanol action in MCF-7 breast cancer cells. Oncol. Rep. 21, 977–981 (2009).

    CAS  PubMed  Google Scholar 

  64. Auchampach, J. A. Adenosine receptors and angiogenesis. Circ. Res. 101, 1075–1077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng, L. et al. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia 13, 206–216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allard, B. et al. Anti-CD73 therapy impairs tumor angiogenesis. Int. J. Cancer. 134, 1466–1473 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, Q., Du, J. & Zu, L. Overexpression of CD73 in prostate cancer is associated with lymph node metastasis. Pathol. Oncol. Res. 19, 811–814 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Srinivasan, S., Vannberg, F. O. & Dixon, J. B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takedachi, M. et al. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J. Immunol. 180, 6288–6296 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Airas, L., Niemela, J. & Jalkanen, S. CD73 engagement promotes lymphocyte binding to endothelial cells via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Raskovalova, T. et al. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J. Immunol. 175, 4383–4391 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ohta, A. et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J. Immunol. 183, 5487–5493 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Hilchey, S. P. et al. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J. Immunol. 183, 6157–6166 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Ngiow, S. F. et al. Agonistic CD40 mAb-driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor. Cancer Res. 76, 6266–6277 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Armstrong, J. M. et al. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochem. J. 354, 123–130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sevigny, C. P. et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J. Immunol. 178, 4240–4249 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sitkovsky, M. V., Kjaergaard, J., Lukashev, D. & Ohta, A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin. Cancer Res. 14, 5947–5952 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Montalbán Del Barrio, I. et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages — a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J. Immunother. Cancer 4, 49 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. de Lourdes Mora-Garcia, M. et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J. Transl Med. 14, 302 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Cekic, C. et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Shang, B., Liu, Y., Jiang, S. J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 5, 15179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Choi, H. S. et al. The prognostic effects of tumor infiltrating regulatory T cells and myeloid derived suppressor cells assessed by multicolor flow cytometry in gastric cancer patients. Oncotarget 7, 7940–7951 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ohta, A. et al. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine- A2A adenosine receptor pathway. Front. Immunol. 3, 190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, B. et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS ONE 8, e57114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Novitskiy, S. V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822–1831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loi, S. et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl Acad. Sci. USA 110, 11091–11096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ren, Z. H. et al. CD73 is associated with poor prognosis in HNSCC. Oncotarget 7, 61690–61702 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kolachala, V. et al. TNF-α upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell. Mol. Life Sci. 62, 2647–2657 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Reinhardt, J. et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res. 77, 4697–4709 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Hung, S. P., Yang, M. H., Tseng, K. F. & Lee, O. K. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant. 22, 1869–1882 (2013).

    Article  PubMed  Google Scholar 

  99. Cortez, V. S. et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Regateiro, F. S. et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-β. Euro. J. Immunol. 41, 2955–2965 (2011).

    Article  CAS  Google Scholar 

  101. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wu, X. R. et al. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J. Surg. Oncol. 106, 130–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Long, J. S. et al. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Mol. Cell. 50, 394–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Emens, L. et al. CPI-444, an oral adenosine A2a receptor (A2aR) antagonist, demonstrates clinical activity in patients with advanced solid tumors [abstract]. Cancer Res. 77 (Suppl. 13), CT119 (2017).

    Google Scholar 

  105. Hay, C. M. et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology 5, e1208875 (2016). This study demonstrates the preclinical efficacy of MEDI9447, a cross-reacting CD73 mAb that is currently undergoing a phase I clinical trial.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schindler, U. et al. Novel small-molecule inhibitors of ecto-nucleotidase CD73 promote activation of human CD4+ and CD8+ T cells and have profound effects in experimental tumor models [abstract]. Third CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference, 224 https://static1.squarespace.com/static/56dee71e555986fb3ae583e2/t/59ad08b1b8a79b086c865d6c/1504512189107/CIMT_Abstracts_170904.pdf (2017).

    Google Scholar 

  107. Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Borodovsky, A. et al. Preclinical pharmacodynamics and antitumor activity of AZD4635, a novel adenosine 2A receptor inhibitor that reverses adenosine mediated T cell suppression [abstract]. Cancer Res. 77 (Suppl. 13), 5580 (2017).

    Google Scholar 

  109. Walters, M. J. et al. Characterization of the potent and selectiveA2aR antagonist AB928 for the treatment of cancer [abstract]. Cancer Res. 77 (Suppl. 13), 4572 (2017).

    Google Scholar 

  110. Fons, P. et al. Targeting the adenosine immunosuppressive pathway for cancer immunotherapy with small molecule agents [abstract]. Cancer Res. 77 (Suppl. 13), 3970 (2017).

    Google Scholar 

  111. Geoghegan, J. C. et al. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action. mAbs 8, 454–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Piccione, E. C. et al. A novel CD73-blocking antibody reduces production of immunosuppressive adenosine and restores T cell function [abstract]. Cancer Res. 77 (Suppl. 13), 5577 (2017).

    Google Scholar 

  113. Gruenbacher, G. et al. Ecto-ATPase CD39 inactivates isoprenoid-derived Vγ9Vδ2 T cell phosphoantigens. Cell Rep. 16, 444–456 (2016). This is an informative study that demonstrates a previously unrecognized role for CD39 in the dephosphorylation of T cell phosphoantigens.

    Article  CAS  PubMed  Google Scholar 

  114. Xu, S. et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol. 15, 1160–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Serra, S. et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118, 6141–6152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fernandez, P. et al. Extracellular generation of adenosine by the ectonucleotidases CD39 and CD73 promotes dermal fibrosis. Am. J. Pathol. 183, 1740–1746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Di Virgilio, F. & Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Sun, X. et al. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/ENTPD1 null mice. Hepatology 57, 205–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Horenstein, A. L. et al. NAD+-metabolizing ectoenzymes in remodeling tumor-host interactions: the human myeloma model. Cells 4, 520–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vaisitti, T. et al. NAD+-metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic leukemia model. FEBS Lett. 585, 1514–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Antonioli, L., Pacher, P., Vizi, E. S. & Hasko, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sharif, T. et al. The NAD+ salvage pathway modulates cancer cell viability via p73. Cell Death Differ. 23, 669–680 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. US National Library of Medicine. ClinicalTrial.gov https://clinicaltrials.gov/ct2/show/NCT02944565 (2017).

  124. US National Library of Medicine. ClinicalTrial.gov https://clinicaltrials.gov/ct2/show/NCT01084252 (2017).

  125. Zimmermann, H. Prostatic acid phosphatase, a neglected ectonucleotidase. Purinerg. Signal. 5, 273–275 (2009).

    Article  CAS  Google Scholar 

  126. Yegutkin, G. G. et al. Consequences of the lack of CD73 and prostatic acid phosphatase in the lymphoid organs. Mediators Inflamm. 2014, 485743 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kim, S. H. et al. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 6, 1311–1322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rao, S. R. et al. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br. J. Cancer. 116, 227–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Pettengill, M. et al. Soluble ecto-5′-nucleotidase (5′-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J. Biol. Chem. 288, 27315–27326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Iannone, R., Miele, L., Maiolino, P., Pinto, A. & Morello, S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am. J. Cancer Res. 4, 172–181 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    Article  CAS  PubMed  Google Scholar 

  133. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Cekic, C., Sag, D., Day, Y. J. & Linden, J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. J. Exp. Med. 210, 2693–2706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  CAS  Google Scholar 

  136. Moriyama, K. & Sitkovsky, M. V. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J. Biol. Chem. 285, 39271–39288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010). This study shows the first preclinical demonstration that targeting CD73 might be an effective cancer therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tan, E. Y., Mujoomdar, M. & Blay, J. Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. Am. J. Pathol. 165, 319–330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression. Oncotarget 7, 64274–64288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cai, X. Y. et al. Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection. Medicine 95, e4989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cai, X. Y. et al. Overexpression of CD39 and high tumoral CD39+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. Int. J. Clin. Exp. Pathol. 8, 14757–14764 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Abousamra, N. K., Salah El-Din, M., Hamza Elzahaf, E. & Esmael, M. E. Ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1/CD39) as a new prognostic marker in chronic lymphocytic leukemia. Leuk. Lymphoma 56, 113–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Lu, X. X. et al. Expression and clinical significance of CD73 and hypoxia-inducible factor-1α in gastric carcinoma. World J. Gastroenterol. 19, 1912–1918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, B. et al. The expression and clinical significance of CD73 molecule in human rectal adenocarcinoma. Tumour Biol. 36, 5459–5466 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Yu, Y. I. et al. Ecto-5′-nucleotidase expression is associated with the progression of renal cell carcinoma. Oncol. Lett. 9, 2485–2494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Leclerc, B. G. et al. CD73 expression is an independent prognostic factor in prostate cancer. Clin. Cancer Res. 22, 158–166 (2016). This study shows that CD73 expression in the prostate epithelium suppresses immunosurveillance by CD8+ T cells, whereas CD73 expression in the tumour stroma reduces NF-κB signalling in tumour cells via A2BR signalling.

    Article  CAS  PubMed  Google Scholar 

  147. Wettstein, M. S. et al. CD73 predicts favorable prognosis in patients with nonmuscle-invasive urothelial bladder cancer. Dis. Markers 2015, 785461 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Bowser, J. L. et al. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J. Clin. Invest. 126, 220–238 (2016). This study shows that CD73-generated adenosine promotes epithelial integrity and suggests why loss of CD73 in endometrial cancer enables tumour progression.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Jaen (Arcus Biosciences) and K. Sachsenmeier (AstraZeneca) for helpful discussions. M.J.S. was supported by a National Health and Medical Research Council of Australia (NHMRC) Senior Research Fellowship (1078671), an NHMRC Project Grant (1120887) and a Research Agreement from MedImmune. M.W.L.T. was supported by an NHMRC Project Grant (1120887).

Author information

Authors and Affiliations

Authors

Contributions

D.V., M.W.L.T, and M.J.S. researched the data for the article. A.Y. provided a substantial contribution to discussions of the content. D.V. wrote the article, and all authors contributed equally to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Mark J. Smyth.

Ethics declarations

Competing interests

M.J.S. declares scientific research agreements with Bristol-Myers Squibb, Corvus Pharmaceuticals and Aduro Biotech. All other authors declare no conflict of interest.

PowerPoint slides

Glossary

Hypoxia

The disorganized arrangement of blood vessels around a tissue such as cancer, which often results in irregular distribution of oxygen within that tissue; low oxygen levels are often seen in regions of tissues further away from blood vessels.

Ectonucleotidases

Families of nucleotide-metabolizing enzymes that possess an active catalytic site and are expressed on the plasma membrane. These enzymes are associated with the catalysis of nucleotides to their corresponding nucleosides.

Regulatory T cells

(Treg cells). A subpopulation of CD4+ T cells that are involved in modulating inflammation and preventing autoimmunity. However, in the tumour microenvironment, the accumulated presence of these suppressor populations has an important role in impairing antitumour immunity.

Adoptive cellular therapies

(ACTs). Treatments used to help the immune system fight diseases, such as cancer and infections with certain viruses. T cells are collected from a patient and grown ex vivo to increase the number of T cells that are able to kill cancer cells or fight infections. These T cells are then infused back into the patient. Also called cellular adoptive immunotherapy.

Recurrence-free survival

Relating to cancer therapy, refers to the time after a treatment when patients show no signs of disease re-appearance (that is, these patients are cancer-free). This is also called disease-free survival or relapse-free survival.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of myeloid immune cells that originate from the bone marrow and exhibit potent suppressive functions.

Exosomes

Microvesicles of endocytic origin that are secreted by several cells, including tumour cells.

Mesothelioma

An aggressive form of cancer originating around the lining (mesothelium) of organs such as the lungs, abdomen or heart.

Exhausted or dysfunctional T cells

A state of T cells generally associated with progressive loss of T cell effector functions, resulting in exhaustion or dysfunction. Exhausted T cells are commonly observed during many chronic infections and cancer.

Hyperoxic conditions

A condition where cells or tissues are exposed to an elevated concentration of oxygen.

Stable disease

A term commonly used in cancer to describe the condition where tumours neither progress to distant organs nor regress.

G protein-coupled receptors

(GPCRs). Transmembrane receptors that detect extracellular molecules to initiate signalling pathways essential for cellular processes and maintenance of homeostasis.

Proliferative centres

Regions within a tumour microenvironment that are characterized by increased tumour proliferation and are commonly identified by elevated Ki-67 staining.

Scleroderma

An autoimmune condition that affects the connective tissue in the body. Scleroderma commonly results in thickening and hardening of skin in areas such as the hands and face.

Salvage pathway

A pathway in which nucleosides that have been released during RNA and DNA degradation are synthesized to form nucleotides. The activation of this pathway is usually observed in cells or tissues that are unable to undergo de novo synthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, D., Young, A., Teng, M. et al. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17, 709–724 (2017). https://doi.org/10.1038/nrc.2017.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.86

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer