Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turning the tide in myelodysplastic/myeloproliferative neoplasms

Key Points

  • Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive haematopoietic malignancies that combine myeloid cell dysplasia and proliferation. Recognized entities are juvenile myelomonocytic leukaemia (JMML), chronic myelomonocytic leukaemia (CMML), atypical chronic myeloid leukaemia (aCML) and MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T).

  • JMML is a disease of young children that occurs as a result of de novo mutations or in the context of hereditary predisposition syndromes. JMML is considered a RASopathy, as somatic or germline mutations that activate the RAS pathway are common founder events whereas secondary mutations are less consistent.

  • MDS/MPN are rare in middle age, but their incidence markedly increases in older individuals, and they can be regarded as one of the malignant conversions of age-related clonal haematopoiesis (ARCH). Mutations in epigenetic regulators may drive the early phases of these diseases, with mutations in signalling genes being acquired later during disease progression.

  • Epigenetic dysregulation in MDS/MPN involves abnormal histone marking caused by inactivation of chromatin modifiers or abnormal DNA methylation resulting from mutations in DNA methyltransferases, splicing regulators or tet methylcytosine dioxygenase 2 (TET2).

  • Hypersensitivity of myeloid progenitors to granulocyte–macrophage colony-stimulating factor (GM-CSF) is a hallmark of JMML and a common feature of CMML, especially when mutations are acquired in signalling genes. An inflammatory bone marrow microenvironment may favour neoplastic at the expense of normal haematopoiesis.

  • Allogeneic stem cell transplantation is the only curative therapy and is commonly used for children with JMML, whereas many adult patients with MDS/MPN are poor transplant candidates owing to age and comorbidities.

  • Hypomethylating agents normalize blood counts in a subset of patients, but rarely restore polyclonal haematopoiesis and have modest effect on survival. Current experimental therapies are focused on inhibiting activated signalling pathways.

  • Novel therapeutic strategies may emerge from a better mechanistic understanding of the interactions between MDS/MPN cells and their stromal microenvironment. The functional capacity of residual normal haematopoietic cells will be crucial to any approach aimed at eliminating the MDS/MPN clone.

Abstract

Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive myeloid malignancies recognized as a distinct category owing to their unique combination of dysplastic and proliferative features. Although current classification schemes still emphasize morphology and exclusionary criteria, disease-defining somatic mutations and/or germline predisposition alleles are increasingly incorporated into diagnostic algorithms. The developing picture suggests that phenotypes are driven mostly by epigenetic mechanisms that reflect a complex interplay between genotype, physiological processes such as ageing and interactions between malignant haematopoietic cells and the stromal microenvironment of the bone marrow. Despite the rapid accumulation of genetic knowledge, therapies have remained nonspecific and largely inefficient. In this Review, we discuss the pathogenesis of MDS/MPN, focusing on the relationship between genotype and phenotype and the molecular underpinnings of epigenetic dysregulation. Starting with the limitations of current therapies, we also explore how the available mechanistic data may be harnessed to inform strategies to develop rational and more effective treatments, and which gaps in our knowledge need to be filled to translate biological understanding into clinical progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clonal evolution in MDS/MPN.
Figure 2: Genes mutated in MDS/MPN and CNL.
Figure 3: PRC2 components and interactions.
Figure 4: Mutations, activated pathways and therapeutic targets in CMML.

Similar content being viewed by others

References

  1. Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391–2405 (2016).

    CAS  PubMed  Google Scholar 

  2. Rauen, K. A. The RASopathies. Annu. Rev. Genom. Hum. Genet. 14, 355–369 (2013).

    CAS  Google Scholar 

  3. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. McKerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Guru Murthy, G. S., Dhakal, I. & Mehta, P. Incidence and survival outcomes of chronic myelomonocytic leukemia in the United States. Leukemia Lymphoma 58, 1648–1654 (2017).

    PubMed  Google Scholar 

  8. Srour, S. A. et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001–2012. Br. J. Haematol. 174, 382–396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    CAS  PubMed  Google Scholar 

  10. Micol, J. B. & Abdel-Wahab, O. Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica 99, 201–203 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. West, R. R., Hsu, A. P., Holland, S. M., Cuellar-Rodriguez, J. & Hickstein, D. D. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica 99, 276–281 (2014). The first description of heterozygous ASXL1 mutations occurring in patients with germline heterozygous mutations in GATA2 who subsequently develop proliferative CMML, suggesting cooperation between GATA2 haploinsufficiency and ASXL1 mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ismael, O. et al. De novo childhood myelodysplastic/myeloproliferative disease with unique molecular characteristics. Br. J. Haematol. 158, 129–137 (2012).

    CAS  PubMed  Google Scholar 

  13. Niemeyer, C. M. et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat. Genet. 42, 794–800 (2010). This study showed that a dominant developmental disorder resulting from germline missense mutations in CBL predisposes to JMML through loss of the wild-type allele in haematopoietic cells, with some individuals experiencing spontaneous regression of their leukaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    CAS  PubMed  Google Scholar 

  15. Shannon, K. M. et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N. Engl. J. Med. 330, 597–601 (1994).

    CAS  PubMed  Google Scholar 

  16. Tartaglia, M., Cotter, P. D., Zampino, G., Gelb, B. D. & Rauen, K. A. Exclusion of PTPN11 mutations in Costello syndrome: further evidence for distinct genetic etiologies for Noonan, cardio-facio-cutaneous and Costello syndromes. Clin. Genet. 63, 423–426 (2003).

    CAS  PubMed  Google Scholar 

  17. al-Alawi, N. et al. Differential regulation of cellular activities by GTPase-activating protein and NF1. Mol. Cell. Biol. 13, 2497–2503 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    CAS  PubMed  Google Scholar 

  19. Bunda, S. et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat. Commun. 6, 8859 (2015).

    CAS  PubMed  Google Scholar 

  20. Tartaglia, M. et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78, 279–290 (2006).

    CAS  PubMed  Google Scholar 

  21. Tidyman, W. E. & Rauen, K. A. Pathogenetics of the RASopathies. Hum. Mol. Genet. 25, R123–R132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kraoua, L. et al. Constitutional NRAS mutations are rare among patients with Noonan syndrome or juvenile myelomonocytic leukemia. Am. J. Med. Genet. A 158A, 2407–2411 (2012).

    PubMed  Google Scholar 

  23. Strullu, M. et al. In hematopoietic cells with a germline mutation of CBL, loss of heterozygosity is not a signature of juvenile myelo-monocytic leukemia. Leukemia 27, 2404–2407 (2013).

    CAS  PubMed  Google Scholar 

  24. Strullu, M. et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J. Med. Genet. 51, 689–697 (2014).

    CAS  PubMed  Google Scholar 

  25. Dong, L. et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016). Activating mutations in Ptpn11 in mouse mesenchymal stem and/or progenitor cells and osteoprogenitors were shown to promote leukaemogenesis through overproduction of the chemokine CCL3, which attracts monocytes to the leukaemic niche.

    PubMed  PubMed Central  Google Scholar 

  26. Zambetti, N. A. et al. Mesenchymal Inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016).

    CAS  PubMed  Google Scholar 

  27. Sakaguchi, H. et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet. 45, 937–941 (2013).

    CAS  PubMed  Google Scholar 

  28. Caye, A. et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 47, 1334–1340 (2015).

    CAS  PubMed  Google Scholar 

  29. Stieglitz, E. et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 47, 1326–1333 (2015). References 28 and 29 identified the genomic events associated with JMML pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Halloran, K., Ritchey, A. K., Djokic, M. & Friehling, E. Transient juvenile myelomonocytic leukemia in the setting of PTPN11 mutation and Noonan syndrome with secondary development of monosomy 7. Pediatr. Blood Cancer http://dx.doi.org/10.1002/pbc.26408 (2017).

  31. Hirabayashi, S. et al. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood 119, e96–e99 (2012).

    CAS  PubMed  Google Scholar 

  32. Mason, C. C. et al. Age-related mutations and chronic myelomonocytic leukemia. Leukemia 30, 906–913 (2016). A study showing that most patients with CMML have mutations in at least two genes identified in ARCH, consistent with a model in which clinical CMML ensues when sufficient stochastically acquired age-related mutations have accumulated.

    CAS  PubMed  Google Scholar 

  33. Merlevede, J. et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat. Commun. 7, 10767 (2016). A comprehensive analysis of somatic alterations in CMML found that the response to cytidine analogues azacytidine and decitabine is associated with decreased DNA methylation and gene expression, without expansion of normal haematopoiesis or prevention of clonal genetic evolution.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Itzykson, R. et al. Clonal architecture of chronic myelomonocytic leukemias. Blood 121, 2186–2198 (2013).

    CAS  PubMed  Google Scholar 

  35. Spinner, M. A. et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123, 809–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perez Botero, J. et al. ASXL1 mutated chronic myelomonocytic leukemia in a patient with familial thrombocytopenia secondary to germline mutation in ANKRD26. Blood Cancer J. 5, e315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shiba, N. et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood 119, 2612–2614 (2012).

    CAS  PubMed  Google Scholar 

  38. Polprasert, C. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27, 658–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lewinsohn, M. et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 127, 1017–1023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. West, A. H., Godley, L. A. & Churpek, J. E. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann. NY Acad. Sci. 1310, 111–118 (2014).

    CAS  PubMed  Google Scholar 

  41. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88, 59–65 (1996).

    CAS  PubMed  Google Scholar 

  42. Champion, K. M., Gilbert, J. G., Asimakopoulos, F. A., Hinshelwood, S. & Green, A. R. Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes. Br. J. Haematol. 97, 920–926 (1997).

    CAS  PubMed  Google Scholar 

  43. Vogelstein, B. et al. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 47, 4806–4813 (1987).

    CAS  PubMed  Google Scholar 

  44. Gale, R. E., Wheadon, H. & Linch, D. C. X-Chromosome inactivation patterns using HPRT and PGK polymorphisms in haematologically normal and post-chemotherapy females. Br. J. Haematol. 79, 193–197 (1991).

    CAS  PubMed  Google Scholar 

  45. Gale, R. E., Wheadon, H. & Linch, D. C. Assessment of X-chromosome inactivation patterns using the hypervariable probe M27 beta in normal hemopoietic cells and acute myeloid leukemic blasts. Leukemia 6, 649–655 (1992).

    CAS  PubMed  Google Scholar 

  46. Puck, J. M., Stewart, C. C. & Nussbaum, R. L. Maximum-likelihood analysis of human T-cell X chromosome inactivation patterns: normal women versus carriers of X-linked severe combined immunodeficiency. Am. J. Hum. Genet. 50, 742–748 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS  PubMed  Google Scholar 

  49. Garrison, B. S. & Rossi, D. J. Reactive oxygen species resulting from mitochondrial mutation diminishes stem and progenitor cell function. Cell. Metabolism 15, 2–3 (2012).

    CAS  PubMed  Google Scholar 

  50. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rundberg Nilsson, A., Soneji, S., Adolfsson, S., Bryder, D. & Pronk, C. J. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PloS ONE 11, e0158369 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, J. et al. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J. Clin. Invest. 117, 3283–3295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fleischman, A. G. et al. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 118, 6392–6398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). The first paper to describe recurrent, mutually exclusive mutations in splicing genes in myeloid malignancies.

    CAS  PubMed  Google Scholar 

  57. Piazza, R. et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat. Genet. 45, 18–24 (2013).

    CAS  PubMed  Google Scholar 

  58. Ernst, T. et al. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica 95, 1473–1480 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Elena, C. et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood 128, 1408–1417 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeromin, S. et al. Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations. Haematologica 100, e125–e127 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Patnaik, M. M. et al. Predictors of survival in refractory anemia with ring sideroblasts and thrombocytosis (RARS-T) and the role of next-generation sequencing. Am. J. Hematol. 91, 492–498 (2016).

    CAS  PubMed  Google Scholar 

  62. Itzykson, R. et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J. Clin. Oncol. 31, 2428–2436 (2013). The first study to use mutation-specific discrimination analysis of single cell-derived colonies in patients with CMML to show early clonal dominance, linear acquisition of mutations through UPD, and skewed differentiation of multipotent and common myeloid progenitors towards the granulomonocytic lineage.

    CAS  PubMed  Google Scholar 

  63. Dao, K. H. & Tyner, J. W. What's different about atypical CML and chronic neutrophilic leukemia? Hematol. Am. Soc. Hematol. Educ. Program 2015, 264–271 (2015).

    Google Scholar 

  64. Padron, E. et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood 121, 5068–5077 (2013). Primary CMML samples are shown to have a GM-CSF-dependent pSTAT5 hypersensitivity that correlates with signalling-associated mutations, suggesting opportunities to treat patients with GM-CSF signalling inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwaab, J. et al. Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann. Hematol. 91, 1713–1720 (2012).

    CAS  PubMed  Google Scholar 

  66. Broseus, J. et al. Low rate of calreticulin mutations in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 28, 1374–1376 (2014).

    CAS  PubMed  Google Scholar 

  67. Maxson, J. E. et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 368, 1781–1790 (2013). The first study to describe activating mutations in CSF3R in patients with CNL or aCML.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, S. A. et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood 123, 2645–2651 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pardanani, A. et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia 27, 1870–1873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gambacorti-Passerini, C. B. et al. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood 125, 499–503 (2015).

    CAS  PubMed  Google Scholar 

  71. Lasho, T. L. et al. Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia. Blood Cancer J. 5, e275 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lobry, C. et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J. Exp. Med. 210, 301–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat. Rev. Cancer 17, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  75. Xu, D. et al. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. J. Exp. Med. 208, 1977–1988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamazaki, J. et al. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 7, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Perez, C. et al. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PloS ONE 7, e31605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Alvarez-Errico, D., Vento-Tormo, R., Sieweke, M. & Ballestar, E. Epigenetic control of myeloid cell differentiation, identity and function. Nat. Rev. Immunol. 15, 7–17 (2015).

    CAS  PubMed  Google Scholar 

  79. Liu, F., Wang, L., Perna, F. & Nimer, S. D. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat. Rev. Cancer 16, 359–372 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ko, M. et al. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 263, 6–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Meldi, K. et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J. Clin. Invest. 125, 1857–1872 (2015). An epigenetic classifier made of differentially methylated regions of DNA, primarily localized to nonpromoter regions, distinguishes patients with CMML who will respond to demethylating agents from non-responders.

    PubMed  PubMed Central  Google Scholar 

  82. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010). This study showed that TET2 is important for normal myelopoiesis, explaining how disruption of its enzymatic activity favours myeloid neoplasms.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015). Description of a mechanistic link between a mutant spliceosomal protein, alterations in the splicing of key haematopoietic regulators and impaired haematopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Aucagne, R. et al. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J. Clin. Invest. 121, 2361–2370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Quere, R. et al. Tif1γ regulates the TGF-beta1 receptor and promotes physiological aging of hematopoietic stem cells. Proc. Natl Acad. Sci. USA 111, 10592–10597 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Olk-Batz, C. et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood 117, 4871–4880 (2011).

    CAS  PubMed  Google Scholar 

  87. Fluhr, S. et al. CREBBP is a target of epigenetic, but not genetic, modification in juvenile myelomonocytic leukemia. Clin. Epigenet. 8, 50 (2016).

    Google Scholar 

  88. Wilhelm, T. et al. Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia. Epigenetics 11, 110–119 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Poetsch, A. R. et al. RASA4 undergoes DNA hypermethylation in resistant juvenile myelomonocytic leukemia. Epigenetics 9, 1252–1260 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Helsmoortel, H. H. et al. LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood 127, 1163–1172 (2016).

    CAS  PubMed  Google Scholar 

  91. Locatelli, F. & Niemeyer, C. M. How I treat juvenile myelomonocytic leukemia. Blood 125, 1083–1090 (2015).

    CAS  PubMed  Google Scholar 

  92. Pigazzi, M. et al. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica 98, 602–610 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, Y. L. et al. Deficiency of CREB and over expression of miR-183 in juvenile myelomonocytic leukemia. Leukemia 27, 1585–1588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lagrange, B. et al. A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim. Biophys. Acta 1833, 1936–1946 (2013).

    CAS  PubMed  Google Scholar 

  95. Inoue, D. et al. Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J. Clin. Invest. 123, 4627–4640 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Goodwin, C. B. et al. PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML. Blood 123, 2838–2842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Welner, R. S. et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 27, 671–681 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kleppe, M. et al. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 5, 316–331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kotecha, N. et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14, 335–343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kong, G. et al. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm. J. Clin. Invest. 124, 2762–2773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Broseus, J. et al. Age, JAK2V617F and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 27, 1826–1831 (2013).

    CAS  PubMed  Google Scholar 

  103. Emanuel, P. D. Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 22, 1335–1342 (2008).

    CAS  PubMed  Google Scholar 

  104. Wang, J. et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 116, 5991–6002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, J. et al. Deficiency of β common receptor moderately attenuates the progression of myeloproliferative neoplasm in NrasG12D/+ mice. J. Biol. Chem. 290, 19093–19103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Solary, E., Bernard, O. A., Tefferi, A., Fuks, F. & Vainchenker, W. The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28, 485–496 (2014).

    CAS  PubMed  Google Scholar 

  107. Pronier, E. et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118, 2551–2555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    CAS  PubMed  Google Scholar 

  109. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ko, M. et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Majer, C. R. et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett. 586, 3448–3451 (2012).

    CAS  PubMed  Google Scholar 

  113. Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Patnaik, M. M. et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia 28, 2206–2212 (2014).

    CAS  PubMed  Google Scholar 

  115. Padron, E. et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 5, e333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abdel-Wahab, O. et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210, 2641–2659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Balasubramani, A. et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex. Nat. Commun. 6, 7307 (2015).

    CAS  PubMed  Google Scholar 

  118. Inoue, D. et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia 29, 847–857 (2015).

    CAS  PubMed  Google Scholar 

  119. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. LaFave, L. M. et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 21, 1344–1349 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Visconte, V. et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 120, 3173–3186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Nikpour, M. et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia 27, 889–896 (2013).

    CAS  PubMed  Google Scholar 

  123. Visconte, V. et al. Distinct iron architecture in SF3B1-mutant myelodysplastic syndrome patients is linked to an SLC25A37 splice variant with a retained intron. Leukemia 29, 188–195 (2015).

    CAS  PubMed  Google Scholar 

  124. Dolatshad, H. et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 30, 2322–2331 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. del Rey, M. et al. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts. PloS ONE 10, e0126555 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Baliakas, P. et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29, 329–336 (2015).

    CAS  PubMed  Google Scholar 

  127. Malcovati, L. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126, 233–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127, 2122–2130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016). A proof-of-concept study providing genetic and pharmacological evidence that leukaemias with spliceosomal gene mutations are preferentially susceptible to additional splicing perturbations, providing a new therapeutic avenue in this subset of individuals.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tsai, S. C. et al. Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin. Cancer Res. 21, 3541–3551 (2015).

    CAS  PubMed  Google Scholar 

  131. Box, J. K. et al. Nucleophosmin: from structure and function to disease development. BMC Mol. Biol. 17, 19 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Caudill, J. S. et al. C-terminal nucleophosmin mutations are uncommon in chronic myeloid disorders. Br. J. Haematol. 133, 638–641 (2006).

    CAS  PubMed  Google Scholar 

  133. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Reynaud, D. et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20, 661–673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Droin, N. et al. α-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115, 78–88 (2010). This paper illustrates the cellular heterogeneity in CMML by describing a population of immature dysplastic granulocytes that secrete α-defensins 1–3 to inhibit monocyte differentiation into macrophages, indicating immunosuppressive properties.

    CAS  PubMed  Google Scholar 

  138. Naresh, K. N. & Pavlu, J. Plasmacytoid dendritic cell nodules in bone marrow biopsies of chronic myelomonocytic leukemia. Am. J. Hematol. 85, 893 (2010).

    PubMed  Google Scholar 

  139. Vermi, W., Soncini, M., Melocchi, L., Sozzani, S. & Facchetti, F. Plasmacytoid dendritic cells and cancer. J. Leukocyte Biol. 90, 681–690 (2011).

    CAS  PubMed  Google Scholar 

  140. Goldszmid, R. S. et al. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol. Res. 3, 103–109 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    CAS  PubMed  Google Scholar 

  142. Takagi, M. et al. Autoimmunity and persistent RAS-mutated clones long after the spontaneous regression of JMML. Leukemia 27, 1926–1928 (2013).

    CAS  PubMed  Google Scholar 

  143. Stieglitz, E. et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 125, 516–524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Elliott, M. A. et al. ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia. Am. J. Hematol. 90, 653–656 (2015).

    CAS  PubMed  Google Scholar 

  145. Makishima, H. et al. Somatic SETBP1 mutations in myeloid malignancies. Nat. Genet. 45, 942–946 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Cseh, A. M. et al. Therapy with low-dose azacitidine for MDS in children and young adults: a retrospective analysis of the EWOG-MDS study group. Br. J. Haematol. 172, 930–936 (2016).

    CAS  PubMed  Google Scholar 

  147. Cseh, A. et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood 125, 2311–2313 (2015).

    PubMed  Google Scholar 

  148. Eissa, H. et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol. Blood Marrow Transplant. 17, 908–915 (2011).

    PubMed  Google Scholar 

  149. Park, S. et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur. J. Haematol. 90, 355–364 (2013).

    PubMed  Google Scholar 

  150. Symeonidis, A. et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A Study of the Chronic Malignancies Working Party of the European Group Blood Marrow Transplantation. Br. J. Haematol. 171, 239–246 (2015).

    PubMed  Google Scholar 

  151. Mughal, T. I. et al. An International MDS/MPN Working Group's perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica 100, 1117–1130 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Fenaux, P. et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 10, 223–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Garcia-Manero, G. et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J. Clin. Oncol. 29, 2521–2527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Braun, T. et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood 118, 3824–3831 (2011).

    CAS  PubMed  Google Scholar 

  155. Pleyer, L. et al. Azacitidine in CMML: matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leukemia Res. 38, 475–483 (2014).

    CAS  Google Scholar 

  156. Tantravahi, S. K. et al. A phase II study of the efficacy, safety, and determinants of response to 5-azacitidine (Vidaza(R.)) in patients with chronic myelomonocytic leukemia. Leukemia Lymphoma 57, 2441–2444 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Bunda, S. et al. Inhibition of SRC corrects GM-CSF hypersensitivity that underlies juvenile myelomonocytic leukemia. Cancer Res. 73, 2540–2550 (2013).

    CAS  PubMed  Google Scholar 

  158. Akutagawa, J. et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30, 1335–1343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Singh, H., Longo, D. L. & Chabner, B. A. Improving prospects for targeting, RAS. J. Clin. Oncol. 33, 3650–3659 (2015).

    CAS  PubMed  Google Scholar 

  160. Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2011).

    PubMed  Google Scholar 

  161. Stieglitz, E. et al. Phase II/III trial of a pre-transplant farnesyl transferase inhibitor in juvenile myelomonocytic leukemia: a report from the Children's Oncology Group. Pediatr. Blood Cancer 62, 629–636 (2015).

    CAS  PubMed  Google Scholar 

  162. Fiordalisi, J. J. et al. High affinity for farnesyltransferase and alternative prenylation contribute individually to K-Ras4B resistance to farnesyltransferase inhibitors. J. Biol. Chem. 278, 41718–41727 (2003).

    CAS  PubMed  Google Scholar 

  163. Xu, J. et al. Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood 119, 1032–1035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Moritake, H. et al. Autoimmunity including intestinal Behcet disease bearing the KRAS mutation in lymphocytes: a case report. Pediatrics 137, e20152891 (2016).

    PubMed  Google Scholar 

  166. Garcia-Manero, G. et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial. Lancet Oncol. 17, 496–508 (2016).

    CAS  PubMed  Google Scholar 

  167. Athuluri-Divakar, S. K. et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165, 643–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lyubynska, N. et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Science Transl Med. 3, 76ra27 (2011).

    Google Scholar 

  169. Chang, T. et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J. Clin. Invest. 123, 335–339 (2013).

    CAS  PubMed  Google Scholar 

  170. Borthakur, G. et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer 122, 1871–1879 (2016).

    CAS  PubMed  Google Scholar 

  171. Okkenhaug, K., Graupera, M. & Vanhaesebroeck, B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6, 1090–1105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Padron, E. et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin. Cancer Res. 22, 3746–3754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Fleischman, A. G. et al. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood 122, 3628–3631 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Dao, K. H. et al. Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia. Leuk. Res. Rep. 3, 67–69 (2014).

    PubMed  PubMed Central  Google Scholar 

  175. Freedman, J. L. et al. Atypical chronic myeloid leukemia in two pediatric patients. Pediatr. Blood Cancer 63, 156–159 (2016).

    CAS  PubMed  Google Scholar 

  176. Stahl, M. et al. Clinical response to ruxolitinib in CSF3R T618-mutated chronic neutrophilic leukemia. Ann. Hematol. 95, 1197–1200 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. Lasho, T. L. et al. Chronic neutrophilic leukemia with concurrent CSF3R and SETBP1 mutations: single colony clonality studies. in vitro sensitivity to JAK inhibitors and lack of treatment response to ruxolitinib. Leukemia 28, 1363–1365 (2014).

    CAS  PubMed  Google Scholar 

  178. Ammatuna, E. et al. Atypical chronic myeloid leukemia with concomitant CSF3R T618I and SETBP1 mutations unresponsive to the JAK inhibitor ruxolitinib. Ann. Hematol. 94, 879–880 (2015).

    PubMed  Google Scholar 

  179. Daver, N. et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am. J. Hematol. 88, 56–59 (2013).

    CAS  PubMed  Google Scholar 

  180. Tyner, J. W. et al. High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia. Leukemia 23, 406–409 (2009).

    CAS  PubMed  Google Scholar 

  181. Jacquel, A. et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119, 4527–4531 (2012).

    CAS  PubMed  Google Scholar 

  182. Obba, S. et al. The PRKAA1/AMPKalpha1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11, 1114–1129 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zoi, K. & Cross, N. C. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int. J. Hematol. 101, 229–242 (2015).

    CAS  PubMed  Google Scholar 

  184. Selimoglu-Buet, D. et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 125, 3618–3626 (2015). A multiparameter flow cytometry assay that accurately and rapidly distinguishes CMML from reactive monocytosis by analysing the division of peripheral blood monocyte subsets in CMML.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Savona, M. R. et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood 125, 1857–1865 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Laplane, L., Beke, A., Vainchenker, W. & Solary, E. Concise review: induced pluripotent stem cells as new model systems in oncology. Stem Cells 33, 2887–2892 (2015).

    PubMed  Google Scholar 

  187. Mulero-Navarro, S. et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep. 13, 504–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Gandre-Babbe, S. et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 121, 4925–4929 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zinkel, S. S. et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 17, 229–239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Niki, M. et al. Role of Dok-1 and Dok-2 in leukemia suppression. J. Exp. Med. 200, 1689–1695 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Yasuda, T. et al. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. J. Exp. Med. 200, 1681–1687 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Futterer, A. et al. Dido gene expression alterations are implicated in the induction of hematological myeloid neoplasms. J. Clin. Invest. 115, 2351–2362 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Parikh, C., Subrahmanyam, R. & Ren, R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 108, 2349–2357 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Lee, B. H. et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 12, 367–380 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu, M. Y., Eldin, K. W. & Beaudet, A. L. Identification of chromatin remodeling genes Arid4a and Arid4b as leukemia suppressor genes. J. Natl Cancer Inst. 100, 1247–1259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Ricci, C. et al. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant. Clin. Cancer Res. 16, 2246–2256 (2010).

    CAS  PubMed  Google Scholar 

  198. Lamothe, B. et al. Deletion of TAK1 in the myeloid lineage results in the spontaneous development of myelomonocytic leukemia in mice. PloS ONE 7, e51228 (2012). Mouse models provide a strong rationale for further exploration of combined targeting of MEK–ERK and JAK–STAT in treating patients with JMML and a myeloproliferative form of CMML.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, J. et al. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 118, 368–379 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Goyama, S., Wunderlich, M. & Mulloy, J. C. Xenograft models for normal and malignant stem cells. Blood 125, 2630–2640 (2015).

    CAS  PubMed  Google Scholar 

  201. Reinisch, A. et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat. Med. 22, 812–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang, H. et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28, 1280–1288 (2014).

    CAS  PubMed  Google Scholar 

  203. Mercier, F. E. & Scadden, D. T. Not all created equal: lineage hard-wiring in the production of blood. Cell 163, 1568–1570 (2015).

    CAS  PubMed  Google Scholar 

  204. Senent, L. et al. Reproducibility of the World Health Organization 2008 criteria for myelodysplastic syndromes. Haematologica 98, 568–575 (2013).

    PubMed  PubMed Central  Google Scholar 

  205. Takagi, M. et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 117, 2887–2890 (2011).

    CAS  PubMed  Google Scholar 

  206. Niemela, J. E. et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117, 2883–2886 (2011).

    PubMed  PubMed Central  Google Scholar 

  207. Calvo, K. R. et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood 125, 2753–2758 (2015). Description of RALD, a nonmalignant condition in young children that shares with JMML somatic mutations in KRAS or NRAS in peripheral blood mononuclear cells but is distinguished by an indolent course.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Lanzarotti, N. et al. RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood 123, 1960–1963 (2014).

    CAS  PubMed  Google Scholar 

  209. Score, J. et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119, 1208–1213 (2012).

    CAS  PubMed  Google Scholar 

  210. Kroeze, L. I. et al. Genetic defects in PRC2 components other than EZH2 are not common in myeloid malignancies. Blood 119, 1318–1319 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Ottley, Division of Haematology and Haematologic Malignancies, University of Utah, Salt Lake City, USA, for critically reading the manuscript. M.W.N.D. was supported by grants from the V Foundation for Cancer Research, National Institutes of Health/National Cancer Institute (R01CA178397; R21CA205936), and Leukemia and Lymphoma Society (GCNCR0314UTAH). J.W.T. was supported by the Leukemia and Lymphoma Society, the V Foundation for Cancer Research, the Gabrielle's Angel Foundation for Cancer Research and the National Cancer Institute (5R00CA151457-04; 1R01CA183947-01). E.S. was supported by grants from Ligue Nationale Contre le Cancer (Equipe labellisée), INCa (PRT2013 H78016; INCA_8073), and Investissements d'Avenir (Molecular Medicine in Oncology program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. N. Deininger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Clinical features of and diagnostic approach to MDS/MPN. (PDF 88 kb)

PowerPoint slides

Glossary

Ring sideroblasts

Erythroblasts with iron-loaded mitochondria visualized by Prussian blue staining (Perls' reaction) as a perinuclear ring of blue granules.

Thrombocytosis

The presence of a high platelet count in the blood (also known as thrombocythaemia).

Age-related clonal haematopoiesis

(ARCH). A state in which somatic mutations are found in cells of the blood or bone marrow of older individuals, but no other criteria for haematological neoplasia are met.

X-chromosome inactivation

Early during somatic tissue development of female organisms, the maternal or the paternal copy of the X-chromosome is randomly inactivated, leading to the balanced expression of paternal and maternal X-chromosomal genes in a tissue; conversely, in a clonal population, the maternal or paternal X-chromosomes are nonrandomly inactivated.

Thrombocytopenia

Decreased number of circulating platelets. Other cytopenias include anaemia (decreased numbers of red blood cells) and leukopenia (decreased numbers of leukocytes).

Splenomegaly

Increased spleen size.

Uniparental disomy

The presence of two identical copies of a given chromosome or part of a chromosome from one parent instead of one copy from the father and one from the mother.

Mastocytosis

A condition that is characterized by infiltration of abnormal mast cells into the tissues of the body.

Erythroblastic island

A group of erythroid precursors with a macrophage in the centre that provides iron for incorporation into haemoglobin in developing red blood cells.

Vasculitis

One of a group of diseases characterized by inflammation of the blood vessel walls, in which patients exhibit symptoms such as fatigue, malaise, weakness and weight loss.

Reduced intensity conditioning

Chemotherapy or radiotherapy, given before haematopoietic stem cell transplantation that does not completely destroy the bone marrow as is the case with standard myeloablative conditioning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deininger, M., Tyner, J. & Solary, E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer 17, 425–440 (2017). https://doi.org/10.1038/nrc.2017.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.40

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer