Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The calcium–cancer signalling nexus

Key Points

  • Calcium is a ubiquitous but nuanced cellular signal; it regulates functions as diverse as cell motility, cell division and cell death. Precise control of the temporal and spatial aspects of calcium changes enable the signal to achieve specific cellular outcomes.

  • The nature of the calcium signal is controlled by a diverse array of calcium channels and pumps, and exchangers present on the plasma membrane and membranes of intracellular organelles. Certain cancers are associated with the remodelling of the expression of some of these proteins.

  • Calcium channels and pumps are amenable to targeting by pharmacological agents.

  • Calcium and calcium-regulating proteins contribute to many of the processes key to cancer cells, including proliferation, invasion and cell death. Several oncogenes and tumour suppressors have effects on calcium homeostasis.

  • Calcium signalling in the tumour microenvironment is likely to be a complex interplay between several different stromal cell types and cancer cells and represents new opportunities for therapeutic intervention.

  • The calcium signal is a crucial regulator of processes associated with tumour progression, including epithelial to mesenchymal transition and the acquisition of specific pathways important in therapeutic resistance.

  • The application of new methods to assess calcium signalling in vivo and over long periods of time will provide new insights into the remodelling of calcium signalling in cancer.

Abstract

The calcium signal is a powerful and multifaceted tool by which cells can achieve specific outcomes. Cellular machinery important in tumour progression is often driven or influenced by changes in calcium ions; in some cases this regulation occurs within spatially defined regions. Over the past decade there has been a deeper understanding of how calcium signalling is remodelled in some cancers and the consequences of calcium signalling on key events such as proliferation, invasion and sensitivity to cell death. Specific calcium signalling pathways have also now been identified as playing important roles in the establishment and maintenance of multidrug resistance and the tumour microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of Ca2+-permeable channels and pumps, and exchangers of the plasma membrane and intracellular organelles.
Figure 2: Ca2+ signal diversity.
Figure 3: The Ca2+ signal and tumour progression.

Similar content being viewed by others

References

  1. Carafoli, E. Calcium signaling: a tale for all seasons. Proc. Natl Acad. Sci. USA 99, 1115–1122 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ashby, M. C. & Tepikin, A. V. Polarized calcium and calmodulin signaling in secretory epithelia. Physiol. Rev. 82, 701–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monteith, G. R., Davis, F. M. & Roberts-Thomson, S. J. Calcium channels and pumps in cancer: changes and consequences. J. Biol. Chem. 287, 31666–31673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prevarskaya, N., Ouadid-Ahidouch, H., Skryma, R. & Shuba, Y. Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Phil. Trans. R. Soc. B 369, 20130097 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roderick, H. L. & Cook, S. J. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8, 361–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Prevarskaya, N., Skryma, R. & Shuba, Y. Calcium in tumour metastasis: new roles for known actors. Nat. Rev. Cancer 11, 609–618 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Okunade, G. W. et al. Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem. 282, 26517–26527 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Clapham, D. E. Calcium signaling. Cell 80, 259–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Trebak, M. STIM/Orai signalling complexes in vascular smooth muscle. J. Physiol. 590, 4201–4208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strehler, E. E. & Zacharias, D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Blaustein, M. P. & Lederer, W. J. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Vandecaetsbeek, I., Vangheluwe, P., Raeymaekers, L., Wuytack, F. & Vanoevelen, J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb. Perspect. Biol. 3, a004184 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pitt, S. J., Reilly-O'Donnell, B. & Sitsapesan, R. Exploring the biophysical evidence that mammalian two-pore channels are NAADP-activated calcium-permeable channels. J. Physiol. 594, 4171–4179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Stefani, D., Rizzuto, R. & Pozzan, T. Enjoy the trip: calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Berridge, M. J. The AM and FM of calcium signalling. Nature 386, 759–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Brochet, D. X., Yang, D., Cheng, H. & Lederer, W. J. Elementary calcium release events from the sarcoplasmic reticulum in the heart. Adv. Exp. Med. Biol. 740, 499–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhivotovsky, B. & Orrenius, S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50, 211–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, C. et al. Calcium flickers steer cell migration. Nature 457, 901–905 (2009). This paper illustrates the importance of highly localized Ca2+ signalling in directional cell migration.

    Article  CAS  PubMed  Google Scholar 

  26. Di Benedetto, G., Scalzotto, E., Mongillo, M. & Pozzan, T. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17, 965–975 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997). One of the first examples to show the importance of the temporal nature of Ca2+ signals in the regulation of gene transcription.

    Article  CAS  PubMed  Google Scholar 

  28. Kar, P. & Parekh, A. B. Distinct spatial Ca2+ signatures selectively activate different NFAT transcription factor isoforms. Mol. Cell 58, 232–243 (2015). This paper describes the nexus between ORAI1-mediated Ca2+ influx, the location of Ca2+ changes and gene transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, B., Tadross, M. R. & Tsien, R. W. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science 351, 863–867 (2016). An excellent illustration of the complexity between Ca2+ channel events at the plasma membrane and gene transcription in the nucleus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mancini, M. & Toker, A. NFAT proteins: emerging roles in cancer progression. Nat. Rev. Cancer 9, 810–820 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brouland, J. P. et al. The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. Am. J. Pathol. 167, 233–242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  33. Dhennin-Duthille, I. et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol. Biochem. 28, 813–822 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Grice, D. M. et al. Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J. Biol. Chem. 285, 37458–37466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, H. et al. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget 5, 3455–3471 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Feng, M. et al. Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143, 84–98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Aung, C. S. et al. Plasma membrane calcium ATPase 4 and the remodeling of calcium homeostasis in human colon cancer cells. Carcinogenesis 30, 1962–1969 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Flourakis, M. et al. Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis. 1, e75 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bolanz, K. A., Hediger, M. A. & Landowski, C. P. The role of TRPV6 in breast carcinogenesis. Mol. Cancer Ther. 7, 271–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kalimutho, M. et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci. 36, 822–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Peters, A. A. et al. Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor-negative breast cancer. Mol. Cancer Ther. 11, 2158–2168 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Geybels, M. S. et al. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin. Epigenetics 7, 128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen, R. et al. CaV1.3 channel alpha1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol. Oncol. 32, 524–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Mariot, P., Vanoverberghe, K., Lalevee, N., Rossier, M. F. & Prevarskaya, N. Overexpression of an alpha 1H (CaV3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J. Biol. Chem. 277, 10824–10833 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Gackiere, F. et al. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J. Biol. Chem. 283, 10162–10173 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Gackiere, F. et al. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol. Open 2, 941–951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Warnier, M. et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene 34, 5383–5394 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Marchi, S. et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23, 58–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng, W. et al. Orai1, a direct target of microRNA-519, promotes progression of colorectal cancer via Akt/GSK3beta signaling pathway. Dig. Dis. Sci. 61, 1553–1560 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Rana, A. et al. Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J. Cell Biol. 209, 653–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopreiato, R., Giacomello, M. & Carafoli, E. The plasma membrane calcium pump: new ways to look at an old enzyme. J. Biol. Chem. 289, 10261–10268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gkika, D. et al. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J. Cell Biol. 208, 89–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gomez-Ospina, N., Tsuruta, F., Barreto-Chang, O., Hu, L. & Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel CaV1.2 encodes a transcription factor. Cell 127, 591–606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niemeyer, B. A. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am. J. Physiol. Cell Physiol. 310, C701–C709 (2016).

    Article  PubMed  Google Scholar 

  56. Kaczmarek, J. S., Riccio, A. & Clapham, D. E. Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc. Natl Acad. Sci. USA 109, 7888–7892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Michailidis, I. E. et al. Age-related homeostatic midchannel proteolysis of neuronal L-type voltage-gated Ca2+ channels. Neuron 82, 1045–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paszty, K. et al. Plasma membrane Ca2+ ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J. Biol. Chem. 277, 6822–6829 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pottorf, W. J. II et al. Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J. Neurochem. 98, 1646–1656 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Motiani, R. K., Abdullaev, I. F. & Trebak, M. A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J. Biol. Chem. 285, 19173–19183 (2010). A clear example of how the contribution of a Ca2+ channel to tumorigenesis can be dependent on the cancer subtype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dubois, C. et al. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26, 19–32 (2014). An example of how the remodelling of Ca2+ influx in cancer is more than simply changes in Ca2+ channel expression and can also involve changes in the responsiveness to specific stimuli.

    Article  CAS  PubMed  Google Scholar 

  62. Vrenken, K. S., Jalink, K., van Leeuwen, F. N. & Middelbeek, J. Beyond ion-conduction: channel-dependent and -independent roles of TRP channels during development and tissue homeostasis. Biochim. Biophys. Acta 1863, 1436–1446 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Raphael, M. et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc. Natl Acad. Sci. USA 111, E3870–E3879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Borowiec, A. S. et al. Are Orai1 and Orai3 channels more important than calcium influx for cell proliferation? Biochim. Biophys. Acta 1843, 464–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Baggott, R. R. et al. Disruption of the interaction between PMCA2 and calcineurin triggers apoptosis and enhances paclitaxel-induced cytotoxicity in breast cancer cells. Carcinogenesis 33, 2362–2368 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Krapivinsky, G., Krapivinsky, L., Manasian, Y. & Clapham, D. E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157, 1061–1072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davis, F. M. et al. Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 33, 2307–2316 (2014). A study demonstrating how specific microenvironmental factors may remodel cancer cells through the Ca2+ signal.

    Article  CAS  PubMed  Google Scholar 

  68. Rimessi, A., Marchi, S., Patergnani, S. & Pinton, P. H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33, 2329–2340 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Giorgi, C. et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl Acad. Sci. USA 112, 1779–1784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pinto, M. C. et al. Calcium signaling and cell proliferation. Cell Signal. 27, 2139–2149 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Ratan, R. R., Maxfield, F. R. & Shelanski, M. L. Long-lasting and rapid calcium changes during mitosis. J. Cell Biol. 107, 993–999 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Parry, H., McDougall, A. & Whitaker, M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. J. Cell Biol. 171, 47–59 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kapur, N., Mignery, G. A. & Banach, K. Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. Am. J. Physiol. Cell Physiol. 292, C1510–C1518 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. See, V., Rajala, N. K., Spiller, D. G. & White, M. R. Calcium-dependent regulation of the cell cycle via a novel MAPKNF-κB pathway in Swiss 3T3 cells. J. Cell Biol. 166, 661–672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thoppil, R. J. et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci. Rep. 5, 14257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jeong, J. et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc. Natl Acad. Sci. USA 113, E282–E290 (2016). An example of how in vivo studies with transgenic models can help to define the role of specific Ca2+ transporters in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Valero, M. L., Mello de Queiroz, F., Stuhmer, W., Viana, F. & Pardo, L. A. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS ONE 7, e51825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shapovalov, G., Ritaine, A., Skryma, R. & Prevarskaya, N. Role of TRP ion channels in cancer and tumorigenesis. Semin. Immunopathol. 38, 357–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Azimi, I., Roberts-Thomson, S. J. & Monteith, G. R. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. Br. J. Pharmacol. 171, 945–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shapovalov, G., Skryma, R. & Prevarskaya, N. Calcium channels and prostate cancer. Recent Pat. Anticancer Drug Discov. 8, 18–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, J. M., Davis, F. M., Roberts-Thomson, S. J. & Monteith, G. R. Ion channels and transporters in cancer. 4. Remodeling of Ca2+ signaling in tumorigenesis: role of Ca2+ transport. Am. J. Physiol. Cell Physiol. 301, C969–C976 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Monteith, G. R., McAndrew, D., Faddy, H. M. & Roberts-Thomson, S. J. Calcium and cancer: targeting Ca2+ transport. Nat. Rev. Cancer 7, 519–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Bissell, M. J. & Hines, W. C. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Semenza, G. L. Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 32, 4057–4063 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Fiorio Pla, A. et al. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31, 200–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Adapala, R. K. et al. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene 35, 314–322 (2016). A clear example of how a pharmacological modulator of a Ca2+-permeable ion channel could be used to increase the effectiveness of current cancer therapies.

    Article  CAS  PubMed  Google Scholar 

  87. Chen, J. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ghosh, S. et al. Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in a tumor microenvironment by maneuvering sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J. Biol. Chem. 287, 32881–32896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schwarz, E. C., Qu, B. & Hoth, M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochim. Biophys. Acta 1833, 1603–1611 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y. et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1. Cell Rep. 12, 388–395 (2015). A study that provides mechanistic insights into how the Ca2+ signal could contribute to cancer progression through transducing signals from the microenvironment.

    Article  CAS  PubMed  Google Scholar 

  91. Li, S. et al. Crucial role of TRPC6 in maintaining the stability of HIF-1alpha in glioma cells under hypoxia. J. Cell Sci. 128, 3317–3329 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Gupta, S. C. et al. Regulation of breast tumorigenesis through acid sensors. Oncogene 35, 4102–4111 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Saunus, J. M. et al. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. J. Pathol. 237, 363–378 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Miranda, F. et al. Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell 30, 273–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, W. et al. Calcium-sensing receptor promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res. 76, 5348–5360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liao, J., Schneider, A., Datta, N. S. & McCauley, L. K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 66, 9065–9073 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Nielsen, N., Lindemann, O. & Schwab, A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br. J. Pharmacol. 171, 5524–5540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Brundage, R. A., Fogarty, K. E., Tuft, R. A. & Fay, F. S. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254, 703–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Fabian, A. et al. TRPC1 channels regulate directionality of migrating cells. Pflugers Arch. 457, 475–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Witze, E. S. et al. Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell trailing edge. Dev. Cell 26, 645–657 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Tsai, F. C. et al. A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat. Cell Biol. 16, 133–144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, S., Zhang, J. J. & Huang, X. Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124–134 (2009). An example of a study that uses in vitro and in vivo models, gene silencing and pharmacological interventions to define the role of a specific Ca2+ influx pathway in cancer.

    Article  CAS  PubMed  Google Scholar 

  104. Kim, J. M., Lee, M., Kim, N. & Heo, W. D. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration. Proc. Natl Acad. Sci. USA 113, 5952–5957 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Monet, M. et al. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 70, 1225–1235 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Sun, J. et al. STIM1- and Orai1-mediated Ca2+ oscillation orchestrates invadopodium formation and melanoma invasion. J. Cell Biol. 207, 535–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang, H., Shah, K., Bradbury, N. A., Li, C. & White, C. Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis. 5, e1482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pon, C. K., Lane, J. R., Sloan, E. K. & Halls, M. L. The beta2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J. 30, 1144–1154 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Middelbeek, J. et al. TRPM7 is required for breast tumor cell metastasis. Cancer Res. 72, 4250–4261 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Tosatto, A. et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha. EMBO Mol. Med. 8, 569–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mahdi, S. H., Cheng, H., Li, J. & Feng, R. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells. Arch. Biochem. Biophys. 583, 18–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Azimi, I. et al. Altered purinergic receptor–Ca2+ signaling associated with hypoxia-induced epithelial–mesenchymal transition in breast cancer cells. Mol. Oncol. 10, 166–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Davis, F. M. et al. Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS ONE 7, e36923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Davis, F. M. et al. Remodeling of purinergic receptor-mediated Ca2+ signaling as a consequence of EGF-induced epithelial-mesenchymal transition in breast cancer cells. PLoS ONE 6, e23464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wen, L. et al. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci. Rep. 6, 23269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rizzuto, R. et al. Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619–8627 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kondratskyi, A., Kondratska, K., Skryma, R. & Prevarskaya, N. Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta 1848, 2532–2546 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. VanHouten, J. et al. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc. Natl Acad. Sci. USA 107, 11405–11410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Curry, M. C., Luk, N. A., Kenny, P. A., Roberts-Thomson, S. J. & Monteith, G. R. Distinct regulation of cytoplasmic calcium signals and cell death pathways by different plasma membrane calcium ATPase isoforms in MDA-MB-231 breast cancer cells. J. Biol. Chem. 287, 28598–28608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, T. T., Peters, A. A., Tan, P. T., Roberts-Thomson, S. J. & Monteith, G. R. Consequences of activating the calcium-permeable ion channel TRPV1 in breast cancer cells with regulated TRPV1 expression. Cell Calcium 56, 59–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Akbulut, Y. et al. (−)-englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew. Chem. Int. Ed. 54, 3787–3791 (2015).

    Article  CAS  Google Scholar 

  123. Sulzmaier, F. J. et al. Englerin a selectively induces necrosis in human renal cancer cells. PLoS ONE 7, e48032 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Frandsen, S. K. et al. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72, 1336–1341 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Nomura, M., Ueno, A., Saga, K., Fukuzawa, M. & Kaneda, Y. Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res. 74, 1056–1066 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Vervliet, T., Parys, J. B. & Bultynck, G. Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35, 5079–5092 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Parys, J. B. The IP3 receptor as a hub for Bcl-2 family proteins in cell death control and beyond. Sci. Signal. 7, pe4 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Akl, H. et al. IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis. 4, e632 (2013). An excellent example of the intersection between a pro-survival protein, Ca2+ signalling and cell death and how this could be exploited as a cancer therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhong, F. et al. Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117, 2924–2934 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pierro, C., Cook, S. J., Foets, T. C. F., Bootman, M. D. & Roderick, H. L. Oncogenic K-Ras suppresses IP3-dependent Ca2+ release through remodelling of the isoform composition of IP(3)Rs and ER luminal Ca2+ levels in colorectal cancer cell lines. J. Cell Sci. 127, 1607–1619 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Hedgepeth, S. C. et al. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. J. Biol. Chem. 290, 7304–7313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cardenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cardenas, C. et al. Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep. 14, 2313–2324 (2016). A potential new method of targeting cancer cells through highly localized Ca2+ changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reis, C. R., Chen, P. H., Bendris, N. & Schmid, S. L. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proc. Natl Acad. Sci. USA 114, 504–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Peters, A. A. et al. The calcium pump plasma membrane Ca2+-ATPase 2 (PMCA2) regulates breast cancer cell proliferation and sensitivity to doxorubicin. Sci. Rep. 6, 25505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dziegielewska, B. et al. T-Type Ca2+ channel inhibition sensitizes ovarian cancer to carboplatin. Mol. Cancer Ther. 15, 460–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ma, X. et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc. Natl Acad. Sci. USA 109, 16282–16287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ma, X. et al. Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc. Natl Acad. Sci. USA 111, 6389–6394 (2014). A study that provides detailed mechanistic insights into how a Ca2+-permeable ion channel can contribute to therapy resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, T. et al. Inhibition of transient receptor potential channel 5 reverses 5-fluorouracil resistance in human colorectal cancer cells. J. Biol. Chem. 290, 448–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT01941901 (2015).

  141. Giorgi, C. et al. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 6, 1435–1445 (2015).

    PubMed  Google Scholar 

  142. Raynal, N. J. et al. Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Res. 76, 1494–1505 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, M. T. et al. K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell 163, 1237–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Wheeler, D. G. et al. CaV1 and CaV2 channels engage distinct modes of Ca2+ signaling to control CREB-dependent gene expression. Cell 149, 1112–1124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Doan, N. T. et al. Targeting thapsigargin towards tumors. Steroids 97, 2–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Mahalingam, D. et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer 114, 986–994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsien, R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528 (1981).

    Article  CAS  PubMed  Google Scholar 

  148. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  149. Minta, A., Kao, J. P. & Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264, 8171–8178 (1989).

    CAS  PubMed  Google Scholar 

  150. Gee, K. R. et al. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27, 97–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Devaraju, P. et al. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.75 (2016).

  153. Weinberg, J. M., Davis, J. A. & Venkatachalam, M. A. Cytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules. J. Clin. Invest. 100, 713–722 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, J. et al. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem. J. 464, 13–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Monteith, G. R. & Bird, G. S. Techniques: high-throughput measurement of intracellular Ca2+ — back to basics. Trends Pharmacol. Sci. 26, 218–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Wiltgen, S. M., Dickinson, G. D., Swaminathan, D. & Parker, I. Termination of calcium puffs and coupled closings of inositol trisphosphate receptor channels. Cell Calcium 56, 157–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  158. Hammer, K., Lipp, P. & Kaestner, L. Multi-beam two-photon imaging of fast Ca2+ signals in the Langendorff mouse heart. Cold Spring Harb. Protoc. 2014, 1175–1179 (2014).

    Article  PubMed  Google Scholar 

  159. Sauer, B., Tian, Q., Lipp, P. & Kaestner, L. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging. Cold Spring Harb. Protoc. 2014, 1328–1332 (2014).

    PubMed  Google Scholar 

  160. Raffaello, A., Mammucari, C., Gherardi, G. & Rizzuto, R. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41, 1035–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pizzo, P., Drago, I., Filadi, R. & Pozzan, T. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch. 464, 3–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Kamer, K. J. & Mootha, V. K. The molecular era of the mitochondrial calcium uniporter. Nat. Rev. Mol. Cell Biol. 16, 545–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Kolch, W. & Pitt, A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat. Rev. Cancer 10, 618–629 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Cohen, S. M., Li, B., Tsien, R. W. & Ma, H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem. Biophys. Res. Commun. 460, 88–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ma, H. et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bittremieux, M., Parys, J. B., Pinton, P. & Bultynck, G. ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca2+ signaling. Biochem. Biophys. Acta 1863, 1364–1378 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. La Rovere, R. M., Roest, G., Bultynck, G. & Parys, J. B. Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60, 74–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Chaudhary, J., Walia, M., Matharu, J., Escher, E. & Grover, A. K. Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am. J. Physiol. Cell Physiol. 280, C1027–C1030 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Szewczyk, M. M., Pande, J., Akolkar, G. & Grover, A. K. Caloxin 1b3: a novel plasma membrane Ca2+-pump isoform 1 selective inhibitor that increases cytosolic Ca2+ in endothelial cells. Cell Calcium 48, 352–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Pande, J. et al. Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am. J. Physiol. Cell Physiol. 290, C1341–C1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Alexander, S. P. et al. The concise guide to PHARMACOLOGY 2015/16: transporters. Br. J. Pharmacol. 172, 6110–6202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Alexander, S. P. et al. The concise guide to PHARMACOLOGY 2015/16: voltage-gated ion channels. Br. J. Pharmacol. 172, 5904–5941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Miller, M. et al. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J. Biol. Chem. 286, 33436–33446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Urban, N. et al. Identification and validation of larixyl acetate as a potent TRPC6 inhibitor. Mol. Pharmacol. 89, 197–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Clapham, D. E. et al. IUPHAR/BPS guide to PHARMACOLOGY transient receptor potential channels. GuideToPharmacology http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=78 (2016).

  177. Leuner, K. et al. Hyperforin — a key constituent of St. John's wort specifically activates TRPC6 channels. FASEB J. 21, 4101–4111 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Simonin, C. et al. Optimization of TRPV6 calcium channel inhibitors using a 3D ligand-based virtual screening method. Angew. Chem. Int. Ed. 54, 14748–14752 (2015).

    Article  CAS  Google Scholar 

  179. Zierler, S. et al. Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J. Biol. Chem. 286, 39328–39335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schafer, S. et al. Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch. 468, 623–634 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Andrews, M. D. et al. Discovery of a selective TRPM8 antagonist with clinical efficacy in cold-related pain. ACS Med. Chem. Lett. 6, 419–424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Almeida, M. C. et al. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32, 2086–2099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Beck, B. et al. Prospects for prostate cancer imaging and therapy using high-affinity TRPM8 activators. Cell Calcium 41, 285–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Ishikawa, J. et al. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J. Immunol. 170, 4441–4449 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Di Sabatino, A. et al. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. J. Immunol. 183, 3454–3462 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Ashmole, I. et al. CRACM/Orai ion channel expression and function in human lung mast cells. J. Allergy Clin. Immunol. 129, 1628–1635.e2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Alexander, S. P. et al. The concise guide to PHARMACOLOGY 2015/16: ligand-gated ion channels. Br. J. Pharmacol. 172, 5870–5903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Alexander, S. P. et al. The concise guide to PHARMACOLOGY 2015/16: overview. Br. J. Pharmacol. 172, 5729–5743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. McAndrew, D. et al. ORAI1-mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther. 10, 448–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Perrouin Verbe, M. A., Bruyere, F., Rozet, F., Vandier, C. & Fromont, G. Expression of store-operated channel components in prostate cancer: the prognostic paradox. Hum. Pathol. 49, 77–82 (2016).

    Article  PubMed  Google Scholar 

  191. Sobradillo, D. et al. A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J. Biol. Chem. 289, 28765–28782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xia, J. et al. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Lett. 381, 31–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Fixemer, T., Wissenbach, U., Flockerzi, V. & Bonkhoff, H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22, 7858–7861 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Zhuang, L. Y. et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab. Invest. 82, 1755–1764 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Peleg, S., Sellin, J. H., Wang, Y., Freeman, M. R. & Umar, S. Suppression of aberrant transient receptor potential cation channel, subfamily V, member 6 expression in hyperproliferative colonic crypts by dietary calcium. Am. J. Physiol. Gastrointest. Liver. Physiol. 299, G593–G601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Guilbert, A. et al. Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer 8, 125 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Yue, D., Wang, Y., Xiao, J. Y., Wang, P. & Ren, C. S. Expression of TRPC6 in benign and malignant human prostate tissues. Asian J. Androl. 11, 541–547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sozucan, Y. et al. TRP genes family expression in colorectal cancer. Exp. Oncol. 37, 208–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Chodon, D. et al. Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer 10, 212 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Liu, J. et al. TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK-3beta pathway. Tumour Biol. 35, 8969–8977 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Fuessel, S. et al. Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int. J. Oncol. 23, 221–228 (2003).

    CAS  PubMed  Google Scholar 

  202. Bidaux, G. et al. Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J. Clin. Invest. 117, 1647–1657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Health and Medical Research Council of Australia (1079671 and 1079672). G.M. is supported by the Mater Foundation. The Translational Research Institute is supported by a grant from the Australian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Monteith.

Ethics declarations

Competing interests

G.R.M. and S.J.R.T. are associated with QUE-Oncology, Inc. N.P. declares no competing interests.

PowerPoint slides

Glossary

Ca2+ channel

A protein or group of proteins that form a Ca2+-permeable pore across a membrane, which can be opened or closed by different stimuli.

Ca2+ pump

A protein that through the hydrolysis of ATP can transport Ca2+ against a concentration gradient; also referred to as Ca2+-ATPases.

Exchangers

Transporters of ions that involve the exchange of one type of ion for another type across a membrane, that does not involve the direct cleavage of ATP.

Store-operated calcium entry

(SOCE). A calcium ion (Ca2+) influx pathway activated upon the depletion of intracellular endoplasmic reticulum Ca2+ stores. The canonical pathway involves Ca2+ influx through calcium release-activated calcium channel protein 1 (ORAI1) after action by the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1).

Ca2+/calmodulin-dependent protein kinases

(CaMKs). Serine/threonine protein kinases, the activation of which is usually dependent on binding to calmodulin (CaM) in the calcium ion (Ca2+)-bound state.

Extracellular calcium-sensing receptor

(CaSR). A plasmalemmal G-protein-coupled receptor activated by changes in levels of extracellular free calcium ion.

Invadopodia

Plasma membrane protrusions associated with degradation of the extracellular matrix, which is important in cancer cell invasion.

Calcium ionophore

A chemical moiety that can facilitate increases in cytosolic free Ca2+ ([Ca2+]CYT) independently of Ca2+ channel activation.

Calcium electroporation

A process whereby an electrical field that increases the permeability of the plasma membrane of cells is applied in the presence of raised extracellular calcium ion concentration.

Necroptosis

A regulated form of necrotic cell death.

Autophagy

A physiological process involving degradation of the cells own components, which can be initiated by nutrient deficiency and can aid cell survival.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteith, G., Prevarskaya, N. & Roberts-Thomson, S. The calcium–cancer signalling nexus. Nat Rev Cancer 17, 373–380 (2017). https://doi.org/10.1038/nrc.2017.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.18

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer