Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic insights into the morass of metastatic heterogeneity

Key Points

  • Metastasis heterogeneity within and between patients is a substantial problem for the clinical management of advanced cancer and has both genetic and nongenetic origins.

  • Recent advances in sequencing and acquisition of metastatic tissue are illuminating the phylogenetic relationship between primary tumours and metastases and the biology that underlies this evolutionary process.

  • Few recurrent metastasis-specific mutational driver events have been identified to date, highlighting the potential importance of other mechanisms, such as increased epigenetic plasticity, in metastatic progression.

  • Beyond heterogeneity in somatic tumour genetics, inherited germline polymorphisms may contribute substantially to differences in metastatic biology across populations.

  • Additional larger, well-controlled genomics studies using metastatic samples will be critical for a better understanding of the contribution of somatic heterogeneity to the clinical course of metastatic disease.

Abstract

Tumour heterogeneity poses a substantial problem for the clinical management of cancer. Somatic evolution of the cancer genome results in genetically distinct subclones in the primary tumour with different biological properties and therapeutic sensitivities. The problem of heterogeneity is compounded in metastatic disease owing to the complexity of the metastatic process and the multiple biological hurdles that the tumour cell must overcome to establish a clinically overt metastatic lesion. New advances in sequencing technology and clinical sample acquisition are providing insights into the phylogenetic relationship of metastases and primary tumours at the level of somatic tumour genetics while also illuminating fundamental mechanisms of the metastatic process. In addition to somatically acquired genetic heterogeneity in the tumour cells, inherited population-based genetic heterogeneity can profoundly modify metastatic biology and further complicate the development of effective, broadly applicable antimetastatic therapies. Here, we examine how genetic heterogeneity impacts metastatic disease and the implications of current knowledge for future research endeavours and therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of metastasis evolution and implications of genetic heterogeneity.
Figure 2: Metastatic heterogeneity owing to alternative seeding mechanisms.
Figure 3: The effect of polymorphism on metastatic progression.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    PubMed  Google Scholar 

  2. Spano, D., Heck, C., De Antonellis, P., Christofori, G. & Zollo, M. Molecular networks that regulate cancer metastasis. Semin. Cancer Biol. 22, 234–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Sundquist, M., Brudin, L. & Tejler, G. Improved survival in metastatic breast cancer 1985–2016. Breast 31, 46–50 (2017).

    Article  PubMed  Google Scholar 

  4. Mariotto, A. B., Etzioni, R., Hurlbert, M., Penberthy, L. & Mayer, M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol. Biomarkers Prev. 26, 809–815 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berry, D. A. et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 353, 1784–1792 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Tevaarwerk, A. J. et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 119, 1140–1148 (2013).

    Article  PubMed  Google Scholar 

  7. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Natrajan, R. et al. Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis. PLoS Med. 13, e1001961 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976). This is the classic paper that describes the linear model of cancer progression.

    Article  CAS  PubMed  Google Scholar 

  12. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Weng, D. et al. Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers. Breast Cancer Res. 14, R18 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    Article  PubMed  Google Scholar 

  17. Faison, W. J. et al. Whole genome single-nucleotide variation profile-based phylogenetic tree building methods for analysis of viral, bacterial and human genomes. Genomics 104, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, T. M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xie, T. et al. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing. Genomics 104, 234–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. McCreery, M. Q. et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat. Med. 21, 1514–1520 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, Z. M. et al. Early and multiple origins of metastatic lineages within primary tumors. Proc. Natl Acad. Sci. USA 113, 2140–2145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang, Y., Sun, Y. & Chen, H. Effect of tumor size on prognosis of node-negative lung cancer with sufficient lymph node examination and no disease extension. Onco Targets Ther. 9, 649–653 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Msaki, A. et al. A hypoxic signature marks tumors formed by disseminated tumor cells in the BALB-neuT mammary cancer model. Oncotarget 7, 33081–33095 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joosse, S. A. & Pantel, K. Genetic traits for hematogeneous tumor cell dissemination in cancer patients. Cancer Metastasis Rev. 35, 41–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Talmadge, J. E., Wolman, S. R. & Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science 217, 361–363 (1982). This paper provides experimental evidence indicating that metastatic lesions arise from a single 'seed' cell.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gibson, W. J. et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat. Genet. 48, 848–855 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014). This study suggests that clusters of tumour cells are more efficient at establishing metastatic lesions than single cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. McFadden, D. G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Deryugina, E. I. & Kiosses, W. B. Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep. 19, 601–616 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008). This paper demonstrates that tumour cells can begin to disseminate very early in primary tumour evolution.

    Article  CAS  PubMed  Google Scholar 

  41. Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 11, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Butler, T. P. & Gullino, P. M. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 35, 512–516 (1975).

    CAS  PubMed  Google Scholar 

  43. Kim, M. Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009). This is the first experimental demonstration of the possibility for transfer of cells between independent tumours.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. et al. Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms. J. Cancer Res. Clin. Oncol. 140, 329–340 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, D. B. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 51, 2792–2799 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tomczak, K., Czerwinska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.) 19, A68–A77 (2015).

    Google Scholar 

  47. Steeg, P. S., Bevilacqua, G., Pozzatti, R., Liotta, L. A. & Sobel, M. E. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res. 48, 6550–6554 (1988).

    CAS  PubMed  Google Scholar 

  48. Yan, J., Yang, Q. & Huang, Q. Metastasis suppressor genes. Histol. Histopathol. 28, 285–292 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Seraj, M. J., Samant, R. S., Verderame, M. F. & Welch, D. R. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 60, 2764–2769 (2000).

    CAS  PubMed  Google Scholar 

  50. Stafford, L. J., Vaidya, K. S. & Welch, D. R. Metastasis suppressors genes in cancer. Int. J. Biochem. Cell Biol. 40, 874–891 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017). This paper describes the largest genomic analysis to date of metastatic lesions from a variety of tumour sites.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015). The genomic studies performed in this manuscript highlight the similarities of metastases within an organ and the dissimilarities between organs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pereira, A. A. et al. Association between KRAS mutation and lung metastasis in advanced colorectal cancer. Br. J. Cancer 112, 424–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Margonis, G. A. et al. Association between specific mutations in KRAS codon 12 and colorectal liver metastasis. JAMA Surg. 150, 722–729 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hong, M. K. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. McDonald, O. G. et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 49, 367–376 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Genomes Project, C. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  Google Scholar 

  59. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995). This paper highlights the substantial effect that genetic background can have on the expression of germline mutations.

    Article  CAS  PubMed  Google Scholar 

  60. Antoniou, A. C. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat. Genet. 42, 885–892 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Struewing, J. P. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 336, 1401–1408 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Milne, R. L. & Antoniou, A. C. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr. Relat. Cancer 23, T69–T84 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hamdi, Y. et al. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Res. Treat. 161, 117–134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lifsted, T. et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77, 640–644 (1998). This study is the first demonstration that inherited polymorphism is an important factor for metastatic progression.

    Article  CAS  PubMed  Google Scholar 

  66. Lancaster, M., Rouse, J. & Hunter, K. Modifiers for mammary tumor latency, progression and metastasis are present on mouse chromosomes 7, 9 and 17. Mamm. Genome 16, 120–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Park, Y. G. et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat. Genet. 37, 1055–1062 (2005). This study describes the identification of the first inherited metastasis susceptibility gene.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Crawford, N. P. et al. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLOS Genet. 3, e214 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Faraji, F. et al. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 8, e1002926 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bai, L. et al. An integrated genome-wide systems genetics screen for breast cancer metastasis susceptibility genes. PLoS Genet. 12, e1005989 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ha, N. H., Long, J., Cai, Q., Shu, X. O. & Hunter, K. W. The circadian rhythm gene Arntl2 is a metastasis susceptibility gene for estrogen receptor-negative breast cancer. PLoS Genet. 12, e1006267 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat. Genet. 18, 19–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Hunter, K. W. & Williams, R. W. Complexities of cancer research: mouse genetic models. ILAR J. 43, 80–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hunter, K. W. et al. Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res. 61, 8866–8872 (2001).

    CAS  PubMed  Google Scholar 

  76. Park, Y. G., Clifford, R., Buetow, K. H. & Hunter, K. W. Multiple cross and inbred strain haplotype mapping of complex-trait candidate genes. Genome Res. 13, 118–121 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Crawford, N. P. et al. Bromodomain 4 activation predicts breast cancer survival. Proc. Natl Acad. Sci. USA 105, 6380–6385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crawford, N. P. et al. The diasporin pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin. Exp. Metastasis 25, 357–369 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Goldberger, N., Walker, R. C., Kim, C. H., Winter, S. & Hunter, K. W. Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b. Cancer Res. 73, 2671–2681 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Winter, S. F., Lukes, L., Walker, R. C., Welch, D. R. & Hunter, K. W. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis. PLoS Genet. 8, e1002735 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Faraji, F. et al. Post-transcriptional control of tumor cell autonomous metastatic potential by CCR4-NOT deadenylase CNOT7. PLoS Genet. 12, e1005820 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lee, M. et al. GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes. Clin. Exp. Metastasis 32, 769–782 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Ono, M. et al. WISP1/CCN4: a potential target for inhibiting prostate cancer growth and spread to bone. PLoS One 8, e71709 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Patel, S. J., Molinolo, A. A., Gutkind, S. & Crawford, N. P. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. PLoS One 8, e61848 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Winter, J. M. et al. Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate cancer. Cell Syst. 4, 31–45.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Alsarraj, J. et al. BRD4 short isoform interacts with RRP1B, SIPA1 and components of the LINC complex at the inner face of the nuclear membrane. PLoS One 8, e80746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Faraji, F. et al. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease. Genome Res. 24, 227–240 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vivian, C. J. et al. Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Res. 77, 6202–6214 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. van ' t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  Google Scholar 

  91. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Crawford, N. P., Yang, H., Mattaini, K. R. & Hunter, K. W. The metastasis efficiency modifier Ribosomal RNA Processing 1 Homolog B (RRP1B) is a chromatin-associated factor. J. Biol. Chem. 284, 28660–28673 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lukes, L., Crawford, N. P., Walker, R. & Hunter, K. W. The origins of breast cancer prognostic gene expression profiles. Cancer Res. 69, 310–318 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yang, H. et al. Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin. Exp. Metastasis 21, 719–735 (2005).

    Article  CAS  Google Scholar 

  95. Qamri, Z. et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol. Cancer Ther. 8, 3117–3129 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Crawford, N. P. et al. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res. 8, R16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hsieh, S. M., Look, M. P., Sieuwerts, A. M., Foekens, J. A. & Hunter, K. W. Distinct inherited metastasis susceptibility exists for different breast cancer subtypes: a prognosis study. Breast Cancer Res. 11, R75 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pei, R. et al. Association of SIPA1 545 C > T polymorphism with survival in Chinese women with metastatic breast cancer. Front. Med. 7, 138–142 (2013).

    Article  PubMed  Google Scholar 

  99. Gdowicz-Klosok, A., Giglok, M., Drosik, A., Suwinski, R. & Butkiewicz, D. The SIPA1 -313A>G polymorphism is associated with prognosis in inoperable non-small cell lung cancer. Tumour Biol. 36, 1273–1278 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Nanchari, S. R. et al. Rrp1B gene polymorphism (1307T>C) in metastatic progression of breast cancer. Tumour Biol. 36, 615–621 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Xie, C. et al. Sipa1 promoter polymorphism predicts risk and metastasis of lung cancer in Chinese. Mol. Carcinog. 52 (Suppl. 1), E110–E117 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Brooks, R. et al. Polymorphisms in MMP9 and SIPA1 are associated with increased risk of nodal metastases in early-stage cervical cancer. Gynecol. Oncol. 116, 539–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Ji, J., Forsti, A., Sundquist, J., Lenner, P. & Hemminki, K. Survival in familial pancreatic cancer. Pancreatology 8, 252–256 (2008).

    Article  PubMed  Google Scholar 

  104. Ji, J., Forsti, A., Sundquist, J., Lenner, P. & Hemminki, K. Survival in bladder and renal cell cancers is familial. J. Am. Soc. Nephrol. 19, 985–991 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hemminki, K., Ji, J., Forsti, A., Sundquist, J. & Lenner, P. Survival in breast cancer is familial. Breast Cancer Res. Treat. 110, 177–182 (2008).

    Article  PubMed  Google Scholar 

  106. Hemminki, K., Ji, J., Forsti, A., Sundquist, J. & Lenner, P. Concordance of survival in family members with prostate cancer. J. Clin. Oncol. 26, 1705–1709 (2008).

    Article  PubMed  Google Scholar 

  107. Pirie, A. et al. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res. 17, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gaudet, M. M. et al. Genetic variation in SIPA1 in relation to breast cancer risk and survival after breast cancer diagnosis. Int. J. Cancer 124, 1716–1720 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. La Merrill, M., Gordon, R. R., Hunter, K. W., Threadgill, D. W. & Pomp, D. Dietary fat alters pulmonary metastasis of mammary cancers through cancer autonomous and non-autonomous changes in gene expression. Clin. Exp. Metastasis 27, 107–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Gordon, R. R. et al. Genotype X diet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis. Mamm. Genome 19, 179–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Singh, A. K., Loscalzo, J. (eds) The Brigham Intensive Review of Internal Medicine (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  112. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nam, J. S. et al. An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 68, 3835–3843 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Wright, S. The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs. Proc. Natl Acad. Sci. USA 6, 320–332 (1920).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kirkwood, T. B. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech. Ageing Dev. 126, 439–443 (2005).

    Article  PubMed  Google Scholar 

  117. Gartner, K. Commentary: random variability of quantitative characteristics, an intangible epigenomic product, supporting adaptation. Int. J. Epidemiol. 41, 342–346 (2012).

    Article  PubMed  Google Scholar 

  118. Blewitt, M. E., Chong, S. & Whitelaw, E. How the mouse got its spots. Trends Genet. 20, 550–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Roe, J. S. et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875–888 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Alsaggar, M., Yao, Q., Cai, H. & Liu, D. Differential growth and responsiveness to cancer therapy of tumor cells in different environments. Clin. Exp. Metastasis 33, 115–124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Aurilio, G. et al. Discordant hormone receptor and human epidermal growth factor receptor 2 status in bone metastases compared to primary breast cancer. Acta Oncol. 52, 1649–1656 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Hoefnagel, L. D. et al. Discordance in ERalpha, PR and HER2 receptor status across different distant breast cancer metastases within the same patient. Ann. Oncol. 24, 3017–3023 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Almendro, V. et al. Genetic and phenotypic diversity in breast tumor metastases. Cancer Res. 74, 1338–1348 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Painter, C. et al. The metastatic breast cancer project: translational genomics through direct patient engagement [abstract P1-05-13]. San Antonio Breast Cancer Symposium https://www.sabcs.org/Portals/SABCS2016/Documents/SABCS-2016-Abstracts.pdf?v=1 (2016).

  128. Condeelis, J. S., Wyckoff, J. & Segall, J. E. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur. J. Cancer 36, 1671–1680 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Bravo-Cordero, J. J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Dovas, A., Patsialou, A., Harney, A. S., Condeelis, J. & Cox, D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J. Microsc. 251, 261–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: anawakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. O'Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to apologize to the many colleagues whose work may have been inadvertently omitted or not included owing to space constraints. This research was supported by the Intramural Research Program of the US National Institutes of Health (NIH), National Cancer Institute (K.W.H., L.W.).

Author information

Authors and Affiliations

Authors

Contributions

K.W.H. and L.W. researched the data for the article. K.W.H., L.W., R.A., S.D. and N.-H.H. provided substantial contributions to the discussions of the content. K.W.H. and L.W. contributed equally to writing and reviewing the article. R.A., S.D. and N.-H.H. also reviewed and edited the article before submission. S.D. and N.-H.H. created the figures for the article.

Corresponding authors

Correspondence to Kent W. Hunter or Lalage Wakefield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Microcell-mediated chromosome transfer

A method of chromosomal transfer by fusion of membrane-encapsulated donor chromosomes with recipient cells.

Polymorphisms

Naturally occurring DNA variants that are passed down through different generations in populations.

Modifier genes

Genes that contribute to or affect the distribution of continuous traits, such as human height.

Quantitative trait locus mapping

Genetic mapping to identify genomic intervals that contain genes that contribute to continuously distributed traits, such as human height.

Genetic backcross mapping panels

A population of animals used for genetic mapping that are generated by breeding two strains to generate F1 progeny, which are then bred back to one of the parental strains.

Recombinant inbred backcross

A genetic mapping study that results from breeding a panel of recombinant inbred strains to a mouse strain of interest.

Haplotypes

Collections of specific DNA sequences of single nucleotide polymorphisms that are clustered and frequently inherited together.

Warm autopsy programmes

Autopsies and tissue collection that occur as soon as possible after patient demise (also known as rapid autopsy programmes).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, K., Amin, R., Deasy, S. et al. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer 18, 211–223 (2018). https://doi.org/10.1038/nrc.2017.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.126

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer