the generation of IgA+ plasmocytes requires PDL1 activity

IMMUNOTHERAPY

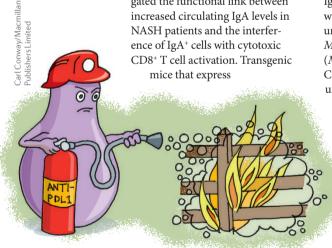
Burning fences

While it is well established that activated immune cells can eradicate established tumours, the processes involved in immune surveillance and control of cancer development are less clear. A new study published in Nature now demonstrates that immunoglobulin A (IgA)-producing (IgA+) cells, which accumulate in the livers of patients and mice with nonalcoholic steatohepatitis (NASH) and suppress activation of cytotoxic CD8⁺ T cells, can be therapeutically targeted with anti-programmed cell death 1 ligand 1 (PDL1) therapy to reduce progression of NASH to hepatocellular carcinoma (HCC).

Using mouse models of NASHdriven HCC, Shalapour et al. investigated the functional link between

urokinase-type plasminogen activator (uPA) driven by a hepatocytespecific promoter for major urinary protein (MUP) (MUP-uPA mice) develop NASH and fibrosis. When fed a high-fat diet (HFD), NASH-bearing MUP-uPA mice had increased circulating IgA levels and liver IgA+ cell infiltration than those fed a normal-fat diet. These liver IgA+ cells were mainly plasma cells or plasmablasts. Interestingly, most IgA+ plasmocytes in the livers of MUPuPA mice and patients with NASH expressed high levels of PDL1 and interleukin-10 (IL10).

The researchers generated MUP-uPA mice deficient for IgA (MUP-uPA;Iga^{-/-}), in which IgA+PDL1+IL10+ plasmocytes were abolished but steatosis was unaffected. Similarly, steatosis in MUP-uPA mice deficient for CD8 $(MUP-uPA;CD8a^{-/-})$, in which CD8+ T cells were abolished, was unaffected. When fed a HFD, NASH to HCC progression in MUP-uPA mice occured after 7 months. Importantly, MUP-uPA;CD8a-/mice developed HCC earlier than MUP-uPA mice, whereas MUP-uPA;Iga-/-


> mice developed HCC with significant delay, with some being tumour-free even after 11 months of a HFD. When analysing CD8+

T cell infiltration in livers of MUPuPA;Iga-/- mice, the researchers found an increasing number of activated CD8+ T cells over time. By contrast, the number of activated CD8+ T cells in MUP-uPA mice decreased over time and was consistently lower than in MUP-uPA;Iga^{-/-} mice, indicating that IgA+ plasmocytes suppress activation of CD8+ T cells. When treating HFD-fed, tumour-bearing MUP-uPA mice with a PDL1-blocking antibody, the tumour burden was significantly reduced after 8 weeks, lymphocyte accumulation in the tumour increased and steatosis decreased. The number of IgA+PDL1+IL10+ plasmocytes in the livers of these mice was decreased, likely due to a disrupted maturation process. By contrast, neither MUP-uPA;Iga-/mice nor MUP-uPA;CD8a^{-/-} mice responded to PDL1 blockade with reduced tumour growth, indicating that the generation of IgA+ plasmocytes requires PDL1 activity.

Collectively, this research highlights that effective liver immunosurveillance is disrupted during chronic inflammation when IgA+ plasmocyte infiltration in the liver is increased. Moreover, these findings broaden the application range of anti-PDL1 therapy, which could potentially prevent HCC progression in patients with NASH by targeting immunosuppressive IgA+ cells, thereby enhancing liver cytotoxic CD8+ T cell activation.

Ulrike Harjes

ORIGINAL ARTICLE Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle antiliver cancer immunity. Nature **551**, 340–345 (2017)

