Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Autoimmunity checkpoints as therapeutic targets in B cell malignancies

Abstract

Targeted therapy of cancer typically focuses on inhibitors (for example, tyrosine kinase inhibitors) that suppress oncogenic signalling below a minimum threshold required for survival and proliferation of cancer cells. B cell acute lymphoblastic leukaemia and B cell lymphomas originate from various stages of development of B cells, which, unlike other cell types, are under intense selective pressure. The vast majority of newly generated B cells are autoreactive and die by negative selection at autoimmunity checkpoints (AICs). Owing to ubiquitous encounters with self-antigen, autoreactive B cells are eliminated by the overwhelming signalling strength of their autoreactive B cell receptor (BCR). A series of recent findings suggests that, despite malignant transformation, AICs are fully functional in B cell malignancies. This Opinion article proposes targeted engagement of AICs as a previously unrecognized therapeutic opportunity to overcome drug resistance in B cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of positive and negative selection during early B cell development.
Figure 2: Regulation of B cell receptor signalling strength and its oncogenic mimics in clonal selection of normal and malignant B cell populations.
Figure 3: Concept of transient autoimmunity checkpoint activation to overcome drug resistance in B cell malignancies.

Similar content being viewed by others

References

  1. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Ehrlich, P. Die Schutzstoffe des Blutes. 73 Verh. Ges. Dtsch. Naturforsch. Aerzte 1, 250–275; English translation available in: Ehrlich, P. in Collected Studies on Immunity (ed. Bolduan, C.) 364–389 (Wiley, 1906).

    Google Scholar 

  3. Nossal, G. J. & Lederberg, J. Antibody production by single cells. Nature 181, 1419–1420 (1958).

    Article  CAS  PubMed  Google Scholar 

  4. Burnet, F. M. The Clonal Selection Theory of Acquired Immunity (Cambridge Univ. Press, 1959).

    Book  Google Scholar 

  5. Pelanda, R. & Torres, R. M. Central B-cell tolerance: where selection begins. Cold Spring Harb. Perspect. Biol. 4, a007146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lam, K. P., Kühn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Feldhahn, N. et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J. Exp. Med. 201, 1837–1852 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee, H. et al. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol. Cell. Biol. 9, 5219–5228 (1998).

    Article  Google Scholar 

  12. Mancao, C. & Hammerschmidt, W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110, 3715–3721 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Weinstein, I. B. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88–92 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen, L. et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 111, 2230–2237 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen, Z. et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukemia. Nature 521, 357–361 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shojaee, S. et al. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nat. Med. 22, 379–387 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shojaee, S. et al. Erk negative feedback control enables pre-B cell transformation and represents a therapeutic target in acute lymphoblastic leukemia. Cancer Cell 28, 114–128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sakaguchi, N. & Melchers, F. Lambda 5, a new light-chain-related locus selectively expressed in pre-B lymphocytes. Nature 324, 579–582 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat. Immunol. 9, 849–856 (2003).

    Article  CAS  Google Scholar 

  26. Ubelhart, R. et al. N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat. Immunol. 8, 759–765 (2010).

    Article  CAS  Google Scholar 

  27. Ippolito, G. C. et al. Forced usage of positively charged amino acids in immunoglobulin CDR-H3 impairs B cell development and antibody production. J. Exp. Med. 203, 1567–1578 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Minegishi, Y. & Conley, M. E. Negative selection at the pre-BCR checkpoint elicited by human mu heavy chains with unusual CDR3 regions. Immunity 14, 631–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Keenan, R. A. et al. Censoring of autoreactive B cell development by the pre-B cell receptor. Science 321, 696–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ren, W. et al. Surrogate light chain is required for central and peripheral B-cell tolerance and inhibits anti-DNA antibody production by marginal zone B cells. Eur. J. Immunol. 4, 1228–1237.

    Article  CAS  PubMed  Google Scholar 

  31. Grimsholm, O. et al. Absence of surrogate light chain results in spontaneous autoreactive germinal centres expanding V(H)81X-expressing B cells. Nat. Commun. 6, 7077 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B. cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Hata, A., Sabe, H., Kurosaki, T., Takata, M. & Hanafusa, H. Functional analysis of Csk in signal transduction through the B-cell antigen receptor. Mol. Cell. Biol. 11, 7306–7313 (1994).

    Article  Google Scholar 

  38. Sieh, M., Bolen, J. B. & Weiss, A. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J 12, 315–321 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kurosaki, T. et al. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179, 1725–1729 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 5, 1057–1069 (2002).

    Article  Google Scholar 

  41. Königsberger, S. et al. Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO J. 31, 3363–3374 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kersseboom, R. et al. Bruton's tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in Pre-B cells. J. Exp. Med. 198, 91–98 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Feldhahn, N. et al. Deficiency of Bruton's tyrosine kinase in B cell precursor leukemia cells. Proc. Natl Acad. Sci. USA 102, 13266–13271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-kappa B activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hashimoto, A. et al. Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J. Exp. Med. 188, 1287–1295 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Clynes, R. et al. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189, 179–185 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Samuels, J., Ng, Y. S., Coupillaud, C., Paget, D. & Meffre, E. Impaired early B cell tolerance in patients with rheumatoid arthritis. J. Exp. Med. 201, 1659–1667 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ramadani, F. et al. The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci. Signal. 3, ra60 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. O'Neill, S. K. et al. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35, 746–756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Suzuki, A. et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197, 657–667 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Deau, M. C. et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Invest. 124, 3923–3928.

    Article  CAS  Google Scholar 

  54. Cheng, S. et al. BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res. 19, 196–207.

    Article  CAS  Google Scholar 

  55. Rowland, S. L., DePersis, C. L., Torres, R. M. & Pelanda, R. Ras activation of Erk restores impaired tonic BCR signaling and rescues immature B cell differentiation. J. Exp. Med. 207, 607–621 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mandal, M. et al. Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat. Immunol. 10, 1110–1117 (2010).

    Article  CAS  Google Scholar 

  57. Yasuda, T. et al. Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28, 499–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Anderson, L. J. & Longnecker, R. EBV LMP2A provides a surrogate pre-B cell receptor signal through constitutive activation of the ERK/MAPK pathway. J. Gen. Virol. 89, 1563–1568 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. Teodorovic, L. S. et al. Activation of Ras overcomes B-cell tolerance to promote differentiation of autoreactive B cells and production of autoantibodies. Proc. Natl Acad. Sci. USA 111, E2797–E2806 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Limnander, A. et al. STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat. Immunol. 12, 425–433 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Guilbault, B. & Kay, R. J. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J. Biol. Chem. 279, 19523–19530 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Mecklenbrauker, I., Saijo, K., Zheng, N. Y., Leitges, M. & Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature 416, 860–865 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Stang, S. L. et al. A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp. Hematol. 37, 122–134 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Enders, A. et al. Loss of the proapoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. J. Exp. Med. 198, 1119–1126 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Luciano, F. et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22, 6785–6793 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Ley, R., Balmanno, K., Hadfield, K., Weston, C. & Cook, S. J. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein Bim. J. Biol. Chem. 278, 18811–18816 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Turner, M. et al. Syk tyrosine kinase is required for the positive selection of immature B cells into the recirculating B cell pool. J. Exp. Med. 186, 2013–2021 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pan, C., Baumgarth, N. & Parnes, J. R. CD72-deficient mice reveal nonredundant roles of CD72 in B cell development and activation. Immunity 11, 495–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Gurung, P. et al. Tyrosine kinase SYK licenses MyD88 adaptor protein to instigate IL-1α-mediated inflammatory disease. Immunity 46, 635–648 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Latour, S., Zhang, J., Siraganian, R. P. & Veillette, A. A unique insert in the linker domain of Syk is necessary for its function in immunoreceptor signaling. EMBO J. 17, 2584–2595 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chen, L. et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100, 4609–4614 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Getahun, A., Beavers, N. A., Larson, S. R., Shlomchik, M. J. & Cambier, J. C. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2006).

    Article  CAS  Google Scholar 

  74. Hug, E., Hobeika, E., Reth, M. & Jumaa, H. Inducible expression of hyperactive Syk in B cells activates Blimp-1-dependent terminal differentiation. Oncogene 33, 3730–3741.

  75. Kersseboom, R. et al. Constitutive activation of Bruton's tyrosine kinase induces the formation of autoreactive IgM plasma cells. Eur. J. Immunol. 40, 2643–2654.

    Article  CAS  PubMed  Google Scholar 

  76. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bailet, O. et al. Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. Cancer Res. 69, 2748–2756 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Rocha, B. & von Boehmer, H. Peripheral selection of the T cell repertoire. Science 251, 1225–1228 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukemia stem-cell formation. Nature 453, 529–533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tretter, T., Ross, A. E., Dordai, D. I. & Desiderio, S. Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. J. Exp. Med. 198, 1863–1873 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Klein, F. et al. The BCR-ABL1 kinase bypasses selection for the expression of a pre-B cell receptor in pre-B acute lymphoblastic leukemia cells. J. Exp. Med. 199, 673–685 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Merchant, M., Caldwell, R. G. & Longnecker, R. The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol. 74, 9115–9124 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lee, B. S., Alvarez, X., Ishido, S., Lackner, A. A. & Jung, J. U. Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi's sarcoma-associated herpesvirus K1. J. Exp. Med. 192, 11–21 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Young, R. M. & Staudt, L. M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 12, 229–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Müschen, M. Rationale for targeting the pre-B-cell receptor signaling pathway in acute lymphoblastic leukemia. Blood 125, 3688–3693 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Erasmus, M. F. et al. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci. Signal. 9, ra116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Geng, H. et al. Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell. 27, 409–425 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Trageser, D. et al. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J. Exp. Med. 206, 1739–1753 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chan, L. N. et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 542, 479–483 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mangum, D. S. et al. VPREB1 deletions occur independent of lambda light chain rearrangement in childhood acute lymphoblastic leukemia. Leukemia 28, 216–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Jumaa, H. et al. Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukemia. Nature 423, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Sprangers, M. et al. SLP65 deficiency results in perpetual V(D)J recombinase activity in pre-B-lymphoblastic leukemia and B-cell lymphoma cells. Oncogene 25, 5180–5186 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhang, J. et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 118, 3080–3087 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Irving, J. et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 124, 3420–3430 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bräuninger, A. et al. Survival and clonal expansion of mutating “forbidden” (immunoglobulin receptor-deficient) Epstein-Barr virus-infected B cells in angioimmunoblastic T cell lymphoma. J. Exp. Med. 194, 927–940 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kanzler, H., Küppers, R., Hansmann, M. L. & Rajewsky, K. Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 184, 1495–1505 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Lu, P. et al. Early events of B-cell receptor signaling are not essential for the proliferation and viability of AIDS-related lymphoma. Leukemia 23, 807–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Brauninger, A. et al. Epstein-Barr virus (EBV)-positive lymphoproliferations in post-transplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B cell differentiation processes. Eur. J. Immunol. 33, 1593–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Savage, K. J. et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102, 3871–3879 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Jungnickel, B. et al. Clonal deleterious mutations in the IKBA gene in the malignant cells in Hodgkin's lymphoma. J. Exp. Med. 191, 395–402 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 206, 981–989 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Joos, S. et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 60, 549–552 (2000).

    CAS  PubMed  Google Scholar 

  110. Melzner, I. et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105, 2535–2542 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Mottok, A. et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 114, 4503–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Nagel, P. D. et al. KIT mutations in primary mediastinal B-cell lymphoma. Blood Cancer J. 4, e241 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mancao, C. et al. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106, 4339–4344 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bechtel, D. et al. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106, 4345–4350 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Asahi, M. et al. Helicobacter pylori CagA containing ITAM-like sequences localized to lipid rafts negatively regulates VacA-induced signaling in vivo. Helicobacter 8, 1–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Krysiak, K. et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 129, 473–483 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Smeenk, L. et al. Molecular role of the PAX5-ETV6 oncoprotein in promoting B-cell acute lymphoblastic leukemia. EMBO J. 36, 718–735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Hoogeboom, R. et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi. J. Exp. Med. 210, 59–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Quinn, E. R. et al. The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood 98, 3745–3749 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Parsonnet, J. et al. Helicobacter pylori infection and gastric lymphoma. N. Engl. J. Med. 330, 1267–1271 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Robbiani, D. F. et al. Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma. Cell 162, 727–737 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Dühren-von Minden, M. et al. Chronic lymphocytic leukemia is driven by antigen independent cell-autonomous signalling. Nature 489, 309–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Minici, C. et al. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukemia. Nat. Commun. 8, 15746 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tiacci, E. et al. Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N. Engl. J. Med. 373, 1733–1747 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kuil, J., Fischer, M. J., de Mol, N. J. & Liskamp, R. M. Cell permeable ITAM constructs for the modulation of mediator release in mast cells. Org. Biomol. Chem. 9, 820–833 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Pracht, C., Minguet, S., Leitges, M., Reth, M. & Huber, M. Association of protein kinase C-delta with the B cell antigen receptor complex. Cell Signal. 19, 715–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Limnander, A. et al. Protein kinase Cδ promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol. Cell. Biol. 34, 1474–1485 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bhavanasi, D., Kostyak, J. C., Swindle, J., Kilpatrick, L. E. & Kunapuli, S. P. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets. Platelets 26, 2–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Pathak, M. K. & Yi, T. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J. Immunol. 167, 3391–3397 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Brooks, R. et al. SHIP1 inhibition increases immunoregulatory capacity and triggers apoptosis of hematopoietic cancer cells. J. Immunol. 184, 3582–3589 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Srivastava, N. et al. A small-molecule inhibitor of SHIP1 reverses age- and diet-associated obesity and metabolic syndrome. JCI Insight 1, e88544 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Negro, R. et al. Overexpression of the autoimmunity-associated phosphatase PTPN22 promotes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood 119, 6278–6287 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hebbring, S. J. et al. Genetic evidence of PTPN22 effects on chronic lymphocytic leukemia. Blood 121, 237–238 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Schickel, J.-N. et al. PTPN22 inhibition resets defective human central B cell tolerance. Sci. Immunol. 1, aaf7153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Vang, T. et al. LYP inhibits T-cell activation when dissociated from CSK. Nat. Chem. Biol. 8, 437–446 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Li, Y. et al. Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood 117, 6702–6713 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jo, H. et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc. Natl Acad. Sci. USA 109, 10581–10586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Molina, G. et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5, 680–687 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hong, C. S. et al. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol. Ther. 16, 821–833 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Iwama, Y. & Eguchi, M. Quantitative evaluation of leukemic mitochondria with a computer-controlled image analyzer. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51, 375–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  143. Kaspers, G. J. et al. Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report. Leukemia 8, 1224–1229 (1994).

    CAS  PubMed  Google Scholar 

  144. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Zabriskie, M. S. et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 26, 428–442 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Schwartzman, O. et al. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc. Natl Acad. Sci. USA 114, E4030–E4039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jones, C. L. et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 126, 2202–2212 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Z. Chen, S. Shojaee, S. Swaminathan, G. Xiao, L. N. Chan, T. Sadras and other current and former members of his laboratory as well as T. G. Graeber (Los Angeles, California, USA), A. Weiss and C. A. Lowell (San Francisco, California, USA), H. Jumaa (Ulm, Germany), A. Melnick (New York, New York, USA), N. Bottini (La Jolla, California, USA), J. U. Jung (Los Angeles, California, USA) and L. M. Staudt (Bethesda, Maryland, USA) for critical discussions and encouragement. M.M. is a Howard Hughes Medical Institute Faculty Scholar, a Scholar of the Leukemia and Lymphoma Society and a Senior Investigator of the Wellcome Trust and is supported by a National Cancer Institute (NCI) Outstanding Investigator Award (R35CA197628).

Author information

Authors and Affiliations

Authors

Contributions

M.M. developed the autoimmunity checkpoint concept, researched the data and wrote the manuscript.

Corresponding author

Correspondence to Markus Müschen.

Ethics declarations

Competing interests

Research in M.M.'s laboratory to elucidate the mechanisms of autoimmunity checkpoints concept activation in B cell malignancies and feasibility of drug-targeting is currently supported by research funding from AbbVie Inc. and Pfizer.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müschen, M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat Rev Cancer 18, 103–116 (2018). https://doi.org/10.1038/nrc.2017.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing