Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Ribosome biogenesis in cancer: new players and therapeutic avenues

A Corrigendum to this article was published on 25 January 2018

This article has been updated

Abstract

The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribosome biogenesis: the essentials.
Figure 2: Dysregulated ribosome biogenesis in cancer.
Figure 3: Cellular challenges of hyperactive ribosome biogenesis in cancer and therapeutic opportunities.
Figure 4: The impaired ribosome biogenesis checkpoint.

Similar content being viewed by others

Change history

  • 25 January 2018

    In this article a source of grant funding for one of the authors was omitted from the Acknowledgements section. The online version of the article has been corrected to include: “The work of G.T. is also supported by shared funding from the IDIBELL and the Vall d'Hebron Institute of Oncology (VHIO).”

References

  1. Noller, H. F. Evolution of protein synthesis from an RNA world. Cold Spring Harb. Perspect. Biol. 4, a003681 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).

    CAS  PubMed  Google Scholar 

  3. Anger, A. M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Wild, T. et al. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol. 8, e1000522 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Badertscher, L. et al. Genome-wide RNAi screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879–2891 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Orsolic, I. et al. The relationship between the nucleolus and cancer: current evidence and emerging paradigms. Semin. Cancer Biol. 37–38, 36–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bywater, M. et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22, 51–65 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Drygin, D. et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 69, 7653–7661 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bruno, P. M. et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat. Med. 23, 461–471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ebert, B. L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Narla, A. & Ebert, B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shen, P. S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gentilella, A., Kozma, S. C. & Thomas, G. A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochim. Biophys. Acta 1849, 812–820 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schmickel, R. D. Quantitation of human ribosomal DNA: hybridization of human DNA with ribosomal RNA for quantitation and fractionation. Pediatr. Res. 7, 5–12 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Stults, D. M., Killen, M. W., Pierce, H. H. & Pierce, A. J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 18, 13–18 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gibbons, J. G., Branco, A. T., Godinho, S. A., Yu, S. & Lemos, B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl Acad. Sci. USA 112, 2485–2490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caburet, S. et al. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res. 15, 1079–1085 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Henderson, A. S., Warburton, D. & Atwood, K. C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl Acad. Sci. USA 69, 3394–3398 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McStay, B. Nucleolar organizer regions: genomic 'dark matter' requiring illumination. Genes Dev. 30, 1598–1610 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goodfellow, S. J. & Zomerdijk, J. C. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell. Biochem. 61, 211–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Sorensen, P. D., Lomholt, B., Frederiksen, S. & Tommerup, N. Fine mapping of human 5S rRNA genes to chromosome 1q42.11——q42.13. Cytogenet. Cell Genet. 57, 26–29 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Uechi, T., Tanaka, T. & Kenmochi, N. A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics 72, 223–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lafontaine, D. L. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat. Struct. Mol. Biol. 22, 11–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Henras, A. K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65, 2334–2359 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Woolford, J. L. Jr & Baserga, S. J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Khatter, H., Myasnikov, A. G., Natchiar, S. K. & Klaholz, B. P. Structure of the human 80S ribosome. Nature 520, 640–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad, Y., Boisvert, F. M., Gregor, P., Cobley, A. & Lamond, A. I. NOPdb: nucleolar proteome database — 2008 update. Nucleic Acids Res. 37, D181–D184 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002).

    Article  PubMed  Google Scholar 

  33. Scherl, A. et al. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100–4109 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Coute, Y. et al. Deciphering the human nucleolar proteome. Mass Spectrom. Rev. 25, 215–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, Z. et al. Heterogeneous ribosomes preferentially translate dstinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Shi, Z. & Barna, M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 31, 31–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Xue, S. et al. RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517, 33–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Komili, S., Farny, N. G., Roth, F. P. & Silver, P. A. Functional specificity among ribosomal proteins regulates gene expression. Cell 131, 557–571 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Gupta, V. & Warner, J. R. Ribosome-omics of the human ribosome. RNA 20, 1004–1013 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. O'Leary, M. N. et al. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet. 9, e1003708 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Slavov, N., Semrau, S., Airoldi, E., Budnik, B. & van Oudenaarden, A. Differential stoichiometry among core ribosomal proteins. Cell Rep. 13, 865–873 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Simsek, D. et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169, 1051–1065.e18 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pianese, G. Beitrag zur histologie und aetiologie der carcinoma. Histologische und experimentelle untersuchungen [German]. Beitr. Pathol. Anat. Allgem 142, 1–193 (1896).

    Google Scholar 

  47. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Delloye-Bourgeois, C. et al. Nucleolar localization of a netrin-1 isoform enhances tumor cell proliferation. Sci. Signal. 5, ra57 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Justilien, V. et al. Ect2-dependent rRNA synthesis is required for KRAS-TRP53-driven lung adenocarcinoma. Cancer Cell 31, 256–269 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Albert, B. et al. A molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Mol. Cell 64, 720–733 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Santagata, S. et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341, 1238303 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ellis, S. R. & Gleizes, P. E. Diamond blackfan anemia: ribosomal proteins going rogue. Semin. Hematol. 48, 89–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Ajore, R. et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 9, 498–507 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rao, S. et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 120, 3764–3773 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Robledo, S. et al. The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14, 1918–1929 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. O'Donohue, M. F., Choesmel, V., Faubladier, M., Fichant, G. & Gleizes, P. E. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J. Cell Biol. 190, 853–866 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Karbstein, K. Quality control mechanisms during ribosome maturation. Trends Cell Biol. 23, 242–250 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bursac, S., Brdovcak, M. C., Donati, G. & Volarevic, S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim. Biophys. Acta 1842, 817–830 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Sulima, S. O. et al. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. Proc. Natl Acad. Sci. USA 111, 5640–5645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Belin, S. et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE 4, e7147 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Marcel, V. et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marcel, V., Catez, F. & Diaz, J. J. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 34, 5513–5523 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Krogh, N. et al. Profiling of 2′-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 44, 7884–7895 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Stumpf, C. R. & Ruggero, D. The cancerous translation apparatus. Curr. Opin. Genet. Dev. 21, 474–483 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bellodi, C. et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep. 3, 1493–1502 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. French, S. L., Osheim, Y. N., Cioci, F., Nomura, M. & Beyer, A. L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 23, 1558–1568 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kobayashi, T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 90, 119–129 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ide, S., Miyazaki, T., Maki, H. & Kobayashi, T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327, 693–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chan, Y. A. et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet. 10, e1004288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-Loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Aguilera, A. & Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Murray, J. M., Stiff, T. & Jeggo, P. A. DNA double-strand break repair within heterochromatic regions. Biochem. Soc. Trans. 40, 173–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kobayashi, T. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell. Mol. Life Sci. 68, 1395–1403 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. van Sluis, M. & McStay, B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev. 29, 1151–1163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Warmerdam, D. O., van den Berg, J. & Medema, R. H. Breaks in the 45S rDNA lead to recombination-mediated loss of repeats. Cell Rep. 14, 2519–2527 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kruhlak, M. et al. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447, 730–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Harding, S. M., Boiarsky, J. A. & Greenberg, R. A. ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition. Cell Rep. 13, 251–259 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Larsen, D. H. et al. The NBS1-treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat. Cell Biol. 16, 792–803 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ciccia, A. et al. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response. Proc. Natl Acad. Sci. USA 111, 18631–18636 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stults, D. M. et al. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res. 69, 9096–9104 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Grummt, I. & Langst, G. Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim. Biophys. Acta 1829, 393–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Dobbelstein, M. & Sorensen, C. S. Exploiting replicative stress to treat cancer. Nat. Rev. Drug Discov. 14, 405–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Gaillard, H., Garcia-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Guetg, C. et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29, 2135–2146 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Killen, M. W., Stults, D. M., Adachi, N., Hanakahi, L. & Pierce, A. J. Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Hum. Mol. Genet. 18, 3417–3428 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627–639 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, L. et al. Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability. Mol. Cell. Biol. 33, 3835–3848 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Song, T. et al. The NAD+ synthesis enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT1) regulates ribosomal RNA transcription. J. Biol. Chem. 288, 20908–20917 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yang, L., Song, T., Chen, L., Soliman, H. & Chen, J. Nucleolar repression facilitates initiation and maintenance of senescence. Cell Cycle 14, 3613–3623 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Iadevaia, V., Liu, R. & Proud, C. G. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin. Cell Dev. Biol. 36, 113–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Hannan, K. et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862–8877 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Kantidakis, T., Ramsbottom, B. A., Birch, J. L., Dowding, S. N. & White, R. J. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc. Natl Acad. Sci. USA 107, 11823–11828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shor, B. et al. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 285, 15380–15392 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Gentilella, A. & Thomas, G. Cancer biology: the director's cut. Nature 485, 50–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Gentilella, A. et al. Autogenous control of 5′TOP mRNA stability by 40S ribosomes. Mol. Cell 67, 55–70.e4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Pourdehnad, M. et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc. Natl Acad. Sci. USA 110, 11988–11993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chan, J. et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci. Signal. 4, ra56 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, L. C., Cook, R. S. & Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36, 2191–2201 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Deshaies, R. J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–338 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Conn, C. S. & Qian, S. B. Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality. Sci. Signal. 6, ra24 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Koplin, A. et al. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189, 57–68 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Bublik, D. R. et al. Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival. Proc. Natl Acad. Sci. USA 114, E496–E505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y. et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513, 440–443 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Volarevic, S. et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G1/S transition. Mol. Cell. Biol. 21, 4246–4255 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Lohrum, M., Ludwig, R., Kubbutat, M., Hanlon, M. & Vousden, K. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 23, 8902–8912 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bhat, K., Itahana, K., Jin, A. & Zhang, Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 23, 2402–2412 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Dai, M.-S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Donati, G., Peddigari, S., Mercer, C. A. & Thomas, G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4, 87–98 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bursac, S. et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc. Natl Acad. Sci. USA 109, 20467–20472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boisvert, F. M., van Koningsbruggen, S., Navascues, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, Y. & Lu, H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 16, 369–377 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Fumagalli, S., Ivanenkov, V. V., Teng, T. & Thomas, G. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 26, 1028–1040 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Horn, H. F. & Vousden, K. H. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27, 5774–5784 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Sloan, K. E., Bohnsack, M. T. & Watkins, N. J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5, 237–247 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zheng, J. et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 29, 1524–1534 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Fumagalli, S. et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat. Cell Biol. 11, 501–508 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Nicolas, E. et al. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nature Commun. 7, 11390 (2016).

    Article  Google Scholar 

  150. Zemp, I. & Kutay, U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett. 581, 2783–2793 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Morgado-Palacin, L. et al. Partial loss of Rpl11 in adult mice recapitulates diamond-blackfan anemia and promotes lymphomagenesis. Cell Rep. 13, 712–722 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Macias, E. et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18, 231–243 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. van Riggelen, J., Yetil, A. & Felsher, D. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Dai, M.-S., Arnold, H., Sun, X.-X., Sears, R. & Lu, H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J. 26, 3332–3345 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Dai, M.-S., Sun, X.-X. & Lu, H. Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression. J. Biol. Chem. 285, 12587–12594 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Challagundla, K. et al. Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol. Cell. Biol. 31, 4007–4021 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Liao, J. M., Zhou, X., Gatignol, A. & Lu, H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene 33, 4916–4923 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Perez-Mancera, P. A., Young, A. R. & Narita, M. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Nishimura, K. et al. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep. 10, 1310–1323 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Fancello, L., Kampen, K. R. & Hofman, I. J., Verbeeck, J. & De Keersmaecker, K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 8, 14462–14478 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Woods, S. J., Hannan, K. M., Pearson, R. B. & Hannan, R. D. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochim. Biophys. Acta 1849, 821–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Golomb, L. Volarevic, S. & Oren, M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 588, 2571–2579 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Peltonen, K. et al. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25, 77–90 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Perry, R. P. & Kelley, D. E. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J. Cell. Physiol. 76, 127–139 (1970).

    Article  CAS  PubMed  Google Scholar 

  169. Morgado-Palacin, L. et al. Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis 35, 2822–2830 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Yang, D. & Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem. 2, 619–646 (2010).

    Article  PubMed  CAS  Google Scholar 

  171. Drygin, D. et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 71, 1418–1430 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00955786?term=CX-3543&rank=1 (2009).

  173. Australian New Zealand Clinical Trials Registry. Trial review. Australian New Zealand Clinical Trials Registry https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364713 (2013)

  174. Harrison, S. J. et al. A phase 1, open-label, dose escalation, safety, PK and PD study of a first in class Pol1 inhibitor (CX-5461) in patients with advanced hematologic malignancies (HM). J. Clin. Oncol. 33, e22212 (2015).

    Article  Google Scholar 

  175. US Natonal Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00780663?term=NCT00780663&rank=1 (2010).

  176. Xu, H. et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 8, 14432 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02719977?term=NCT02719977&rank=1 (2017).

  178. Raymond, E., Faivre, S., Chaney, S., Woynarowski, J. & Cvitkovic, E. Cellular and molecular pharmacology of oxaliplatin. Mol. Cancer Ther. 1, 227–235 (2002).

    CAS  PubMed  Google Scholar 

  179. Machover, D. et al. Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann. Oncol. 7, 95–98 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Andre, T. et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J. Clin. Oncol. 33, 4176–4187 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Burger, K. et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem. 285, 12416–12425 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  183. Zhang, Q. et al. The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress. eLife 3, e03077 (2014).

    Article  PubMed Central  Google Scholar 

  184. Kawashima, S. A. et al. Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis. Cell 167, 512–524.e14 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl Acad. Sci. USA 100, 5336–5341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lastwika, K. J. et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76, 227–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Devlin, J. R. et al. Combination therapy targeting ribosome biogenesis and mRNA translation synergistically extends survival in MYC-driven lymphoma. Cancer Discov. 6, 59–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Crawford, L. J. & Irvine, A. E. Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev. 27, 297–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Anderson, D. J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Gorski, S. A., Snyder, S. K., John, S., Grummt, I. & Misteli, T. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol. Cell 30, 486–497 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Klein, J. & Grummt, I. Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc. Natl Acad. Sci. USA 96, 6096–6101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Berger, C., Horlebein, A., Gogel, E. & Grummt, F. Temporal order of replication of mouse ribosomal RNA genes during the cell cycle. Chromosoma 106, 479–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  195. Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Smirnov, E. et al. Separation of replication and transcription domains in nucleoli. J. Struct. Biol. 188, 259–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Dalgaard, J. Z., Godfrey, E. L. & MacFarlane, R. J. in DNA Replication-Current Advances Ch. 13 (ed. Seligmann, H.) (InTech, 2011).

    Google Scholar 

  198. Akamatsu, Y. & Kobayashi, T. The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol. Cell. Biol. 35, 1871–1881 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. McStay, B. & Grummt, I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Jossen, R. & Bermejo, R. The DNA damage checkpoint response to replication stress: a game of forks. Front. Genet. 4, 26 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Klusmann, I. et al. p53 activity results in dna replication fork processivity. Cell Rep. 17, 1845–1857 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. & von Mering, C. Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15, 3163–3168 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Turowski, T. W. & Tollervey, D. Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdiscip. Rev. RNA 6, 129–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Wilson, D. N. & Doudna Cate, J. H. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 4, a011536 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Henras, A. K., Plisson-Chastang, C., O'Donohue, M. F., Chakraborty, A. & Gleizes, P. E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Strunk, B. S. & Karbstein, K. Powering through ribosome assembly. RNA 15, 2083–2104 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Granneman, S. & Tollervey, D. Building ribosomes: even more expensive than expected? Curr. Biol. 17, R415–R417 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7, 549 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics 11, M111.014050 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Warner, J. R. In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J. Mol. Biol. 115, 315–333 (1977).

    Article  CAS  PubMed  Google Scholar 

  213. Lam, Y. W., Lamond, A. I., Mann, M. & Andersen, J. S. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Boisvert, F. M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell. Proteomics 11, M111.011429 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Gentilella, R. Loewith, C. Munoz-Pinedo, D. Ruggero, J. Warner and R. White for providing insights and comments during the preparation of this manuscript. G.T.'s laboratory is funded by grants from the Asociación Española Contra el Cáncer (AECC) (grant GCB14-2035), Instituto de Salud Carlos III (ISCIII) (grants IIS10/00015), the Spanish Ministry of Science and Innovation (grant SAF2011-24967), the Career Integration Grants (CIG) European Commission (grant PCIG10-GA-2011-304160), the US National Institutes of Health (NIH)/National Cancer Institute (NCI) (grant R01-CA158768), ISCIII-Red Temática de Investigación Cooperativa en Cáncer (RTICC) (grants RD12/0036/0049), Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (grant SGR 870) and Ministerio de Economía y Competitividad, ISCIII (grant PIE13/00022). The work of G.T. is also supported by shared funding from the IDIBELL and the Vall d'Hebron Institute of Oncology (VHIO). S.V.'s laboratory is funded by the Croatian Science Foundation (CSF) (grant 2079), and J.P. is supported by a Juan de la Cierva Fellowship (FJCI-2014-20422). The authors apologize to those whose work could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this manuscript.

Corresponding authors

Correspondence to George Thomas or Siniša Volarević.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

5′-Terminal oligopyrimidine tract

(5′TOP). A specific mRNA sequence that contains a cytosine at the transcriptional start site followed by a stretch of 4 to 13 pyrimidine nucleotides.

7-Methylguanylate-cap-dependent mRNA translation

The prevalent mode of translation initiation in eukaryotic cells, mediated by binding of the eukaryotic translation initiation factor 4E (eIF4E) to the 5′ end of an mRNA via the 7-methylguanylate-cap structure (m7GpppN, where N is any nucleotide), which recruits the 40S ribosome to mRNAs.

Common fragile sites

(CFS). Unstable chromosomal regions that preferentially break or form gaps during metaphase.

G-quadruplex DNA

(G4 DNA). A stable secondary helical structure formed in G-rich nucleic acid sequences and consisting of one or more square planar structures (called tetrads) formed by guanine hydrogen bonds. The G4 structures can form intramolecularly or intermolecularly from DNA strands in parallel or in antiparallel positions.

Homologous recombination

A DNA double-strand break repair process that uses a homologous DNA sequence as a template for repair.

Internal ribosome entry site

(IRES). An RNA structural element that facilitates translation initiation by recruiting 40S ribosomes to an internal position in eukaryotic mRNAs in a cap-independent manner.

I-PpoI

A homing endonuclease from Physarum polycephalum that recognizes and cleaves a 15-base pair sequence present in 47S and 5S ribosomal DNA genes as well as 12 other sites in the human genome.

Non-homologous end joining

(NHEJ). A DNA double-strand break repair process that modifies broken ends and ligates them without the participation of a homologous DNA sequence.

Polysomes

Complexes of an mRNA with two or more ribosomes.

Ribosomal DNA

(rDNA). A region in the nucleolus containing genes whose transcription by RNA polymerase I gives rise to the precursor 47S ribosomal RNA.

Ribosome profiling

Also known as ribosome footprinting or Ribo-Seq. A genome-wide, quantitative technique that uses deep sequencing of mRNA fragments protected by ribosomes from nuclease digestion.

Ribosomopathies

Inherited human disorders caused by mutations in genes encoding ribosome components, or ribosome biogenesis factors, leading to impaired ribosome biogenesis or function.

Unequal sister chromatid exchange

The non-reciprocal exchange of a nucleotide sequence that occurs between repeated sequences present at non-equivalent locations on sister chromatids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier, J., Thomas, G. & Volarević, S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer 18, 51–63 (2018). https://doi.org/10.1038/nrc.2017.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.104

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer