Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Differentiation therapy revisited

Abstract

The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of differentiation therapy.
Figure 2: Acute promyelocytic leukaemia pathogenesis and response to targeted therapies.
Figure 3: Schematic representation of the targets discussed in this Opinion article.

Similar content being viewed by others

References

  1. Lotem, J. & Sachs, L. In vivo control of differentiation of myeloid leukemic cells by recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3. Blood 71, 375–382 (1988).

    CAS  PubMed  Google Scholar 

  2. Sachs, L. The control of hematopoiesis and leukemia: from basic biology to the clinic. Proc. Natl Acad. Sci. USA 93, 4742–4749 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrero, D., Pessano, S., Pagliardi, G. L. & Rovera, G. Induction of differentiation of human myeloid leukemias: surface changes probed with monoclonal antibodies. Blood 61, 171–179 (1983).

    CAS  PubMed  Google Scholar 

  4. Bradley, T. R., Metcalf, D. & Robinson, W. Stimulation by leukaemic sera of colony formation in solid agar cultures by proliferation of mouse bone marrow cells. Nature 213, 926–927 (1967).

    Article  CAS  PubMed  Google Scholar 

  5. Bradley, T. R., Robinson, W. & Metcalf, D. Colony production in vitro by normal polycythaemic and anaemic bone marrow. Nature 214, 511 (1967).

    Article  CAS  PubMed  Google Scholar 

  6. Nilsson, B. Probable in vivo induction of differentiation by retinoic acid of promyelocytes in acute promyelocytic leukaemia. Br. J. Haematol. 57, 365–371 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Sampi, K., Honma, Y., Hozumi, M. & Sakurai, M. Discrepancy between in-vitro and in-vivo inductions of differentiation by retinoids of human acute promyelocytic leukemia cells in relapse. Leuk. Res. 9, 1475–1478 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Wisch, J. S., Griffin, J. D. & Kufe, D. W. Response of preleukemic syndromes to continuous infusion of low-dose cytarabine. N. Engl. J. Med. 309, 1599–1602 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Housset, M., Daniel, M. T. & Degos, L. Small doses of ARA-C in the treatment of acute myeloid leukaemia: differentiation of myeloid leukaemia cells? Br. J. Haematol. 51, 125–129 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Tilly, H. et al. Low-dose cytarabine: persistence of a clonal abnormality during complete remission of acute nonlymphocytic leukemia. N. Engl. J. Med. 314, 246–247 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl Med. 4, 149ra118 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Huang, M. et al. Use of all trans retinoic acid in the treatment of acute promyelocytic leukaemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  14. Degos, L. et al. All-trans retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 85, 2643–2653 (1995).

    CAS  PubMed  Google Scholar 

  15. Warrell, R., de Thé, H., Wang, Z. & Degos, L. Acute promyelocytic leukemia. N. Engl. J. Med. 329, 177–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Hillestad, L. K. Acute promyelocytic leukemia. Acta Med. Scand. 159, 189–194 (1957).

    Article  CAS  PubMed  Google Scholar 

  17. de The, H. & Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat. Rev. Cancer 10, 775–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Dos Santos, G. A., Kats, L. & Pandolfi, P. P. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J. Exp. Med. 210, 2793–2802 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sanz, M. A. & Lo-Coco, F. Modern approaches to treating acute promyelocytic leukemia. J. Clin. Oncol. 29, 495–503 (2011).

    Article  PubMed  Google Scholar 

  20. de Thé, H., Pandolfi, P. & Chen, Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell (in press).

  21. Rowley, J. D., Golomb, H. M. & Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1, 549–550 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. de The, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347, 558–561 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. de Thé, H. et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  PubMed  Google Scholar 

  24. Vickers, M., Jackson, G. & Taylor, P. The incidence of acute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia 14, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Karnan, S. et al. Genomewide array-based comparative genomic hybridization analysis of acute promyelocytic leukemia. Genes Chromosomes Cancer 45, 420–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cancer Genome Atlas Research Network. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  28. Akagi, T. et al. Hidden abnormalities and novel classification of t(15;17) acute promyelocytic leukemia (APL) based on genomic alterations. Blood 113, 1741–1748 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ibanez, M. et al. The mutational landscape of acute promyelocytic leukemia reveals an interacting network of co-occurrences and recurrent mutations. PLoS ONE 11, e0148346 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ronchini, C. et al. PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias. Leukemia 31, 1975–1986 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Riva, L. et al. Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J. 4, e195 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Miller, C. A., Wilson, R. K. & Ley, T. J. Genomic landscapes and clonality of de novo AML. N. Engl. J. Med. 369, 1473 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tocci, A. et al. Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program. Blood 88, 2878–2888 (1996).

    CAS  PubMed  Google Scholar 

  34. Kastner, P. et al. Positive and negative regulation of granulopoiesis by endogenous RARα. Blood 97, 1314–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Strickland, S. & Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15, 393–403 (1978).

    Article  CAS  PubMed  Google Scholar 

  36. Sidell, N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J. Natl Cancer Inst. 68, 589–596 (1982).

    CAS  PubMed  Google Scholar 

  37. Chanda, B., Ditadi, A., Iscove, N. N. & Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Niederreither, K. & Dolle, P. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Wendel, H. G. et al. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc. Natl Acad. Sci. USA 103, 7444–7449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Hajj, H. et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 125, 3447–3454 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Ablain, J. et al. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 20, 167–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, Z. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 24, 1389–1402 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lallemand-Breitenbach, V. & de The, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol. 2, a000661 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Guo, A. et al. The function of PML in p53-dependent apoptosis. Nat. Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Bernardi, R. & Pandolfi, P. P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8, 1006–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi, Y., Lallemand-Breitenbach, V., Zhu, J. & de The, H. PML nuclear bodies and apoptosis. Oncogene 23, 2819–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Nebral, K. et al. Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 139, 269–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Kurahashi, S. et al. PAX5-PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene 30, 1822–1830 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Tan, J. et al. Genomic landscapes of breast fibroepithelial tumors. Nat. Genet. 47, 1341–1345 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Khetchoumian, K. et al. Loss of Trim24 (Tif1 α) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat. Genet. 39, 1500–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Du, C., Redner, R. L., Cooke, M. P. & Lavau, C. Overexpression of wild-type retinoic acid receptor α (RARα) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARα-fusion genes. Blood 94, 793–802 (1999).

    CAS  PubMed  Google Scholar 

  55. McKeown, M. R. et al. Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist. Cancer Discov. 7, 1136–1153 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl Cancer Inst. 96, 269–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Koken, M. H. M. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10, 1315–1324 (1995).

    CAS  PubMed  Google Scholar 

  58. Martens, J. H. et al. PML-RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17, 173–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Sunami, Y. et al. Histone acetyltransferase p300/CREB-binding protein-associated factor (PCAF) is required for all-trans-retinoic acid-induced granulocytic differentiation in leukemia cells. J. Biol. Chem. 292, 2815–2829 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Daniel, M.-T. et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82, 1858–1867 (1993).

    CAS  PubMed  Google Scholar 

  61. Insinga, A. et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 23, 1144–1154 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Occhionorelli, M. et al. The self-association coiled-coil domain of PML is sufficient for the oncogenic conversion of the retinoic acid receptor (RAR) alpha. Leukemia 25, 814–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Sternsdorf, T. et al. Forced retinoic acid receptor a homodimer prime mice for APL-like leukemia. Cancer Cell 9, 81–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Castaigne, S. et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. 1. Clinical results. Blood 76, 1704–1709 (1990).

    CAS  PubMed  Google Scholar 

  65. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Ablain, J. & de The, H. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117, 5795–5802 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Ghavamzadeh, A. et al. Phase II study of single-agent arsenic trioxide for the front-line therapy of acute promyelocytic leukemia. J. Clin. Oncol. 29, 2753–2757 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Mathews, V. et al. Arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: a single center experience. Am. J. Hematol. 70, 292–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Mathews, V. et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J. Clin. Oncol. 28, 3866–3871 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de Thé, H. How acute promyelocytic leukemia revived arsenic. Nat. Rev. Cancer 2, 705–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Camacho, L. H. et al. Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J. Clin. Oncol. 18, 2620–2625 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Guillemin, M. C. et al. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J. Exp. Med. 196, 1373–1380 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Muto, A. et al. A novel differentiation-inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia 15, 1176–1184 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Ablain, J. et al. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J. Exp. Med. 210, 647–653 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Nasr, R. et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat. Med. 14, 1333–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Quignon, F., Chen, Z. & de Thé, H. Retinoic acid and arsenic: towards oncogene targeted treatments of acute promyelocytic leukaemia. Biochim. Biophys. Acta 1333, M53–M61 (1997).

    CAS  PubMed  Google Scholar 

  77. Zhu, J., Lallemand-Breitenbach, V. & de The, H. Pathways of retinoic acid- or arsenic trioxide-induced PML/RARα catabolism, role of oncogene degradation in disease remission. Oncogene 20, 7257–7265 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Jeanne, M. et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18, 88–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Isakson, P., Bjoras, M., Boe, S. O. & Simonsen, A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116, 2324–2331 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, G. Q. et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89, 3345–3353 (1997).

    CAS  PubMed  Google Scholar 

  82. Vitaliano-Prunier, A. et al. Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation. Blood 124, 3772–3780 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, H. H., Qin, Y. Z. & Huang, X. J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med. 370, 1864–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Goto, E. et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 118, 1600–1609 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Gallagher, R. E. et al. Treatment-influenced associations of PML-RARα mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia. Blood 120, 2098–2108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lehmann-Che, J. Bally, C. & de Thé, H. Therapy resistance in APL. N. Engl. J. Med. 371, 1171–1172 (2014).

    Article  Google Scholar 

  87. Iaccarino, L. et al. Mutations affecting both the rearranged and the unrearranged PML alleles in refractory acute promyelocytic leukaemia. Br. J. Haematol. 172, 909–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Shao, W. et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RARα protein in acute promyelocytic leukemia cells. J. Natl Cancer Inst. 90, 124–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Cicconi, L. et al. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia 30, 1987–1992 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Burnett, A. K. et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 16, 1295–1305 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Lo-Coco, F. et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369, 111–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Lo-Coco, F. et al. Targeted therapy alone for acute promyelocytic leukemia. N. Engl. J. Med. 374, 1197–1198 (2016).

    Article  PubMed  Google Scholar 

  93. Mann, K. K. & Miller, W. H. Jr. Death by arsenic: implications of PML sumoylation. Cancer Cell 5, 307–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, W. et al. Induction of tumor arrest and differentiation with prolonged survival by intermittent hypoxia in a mouse model of acute myeloid leukemia. Blood 107, 698–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Olsson, I. L., Breitman, T. R. & Gallo, R. C. Priming of human myeloid leukemic cell lines HL-60 and U-937 with retinoic acid for differentiation effects of cyclic adenosine 3′:5′-monophosphate-inducing agents and a T-lymphocyte-derived differentiation factor. Cancer Res. 42, 3928–3933 (1982).

    CAS  PubMed  Google Scholar 

  96. Lando, M., Abemayor, E., Verity, M. A. & Sidell, N. Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells. Cancer Res. 50, 722–727 (1990).

    CAS  PubMed  Google Scholar 

  97. Benoit, G. et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J. 18, 7011–7018 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Quenech'Du, N., Ruchaud, S., Khelef, N., Guiso, N. & Lanotte, M. A sustained increase in the endogenous level of cAMP reduces the retinoid concentration required for APL cell maturation to near physiological levels. Leukemia 12, 1829–1833 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Kamashev, D. E., Vitoux, D. & de Thé, H. PML/RARA-RXR oligomers mediate retinoid- and rexinoid- /cAMP in APL cell differentiation. J. Exp. Med. 199, 1–13 (2004).

    Article  CAS  Google Scholar 

  100. Altucci, L. et al. Rexinoid-triggered differentiation and tumours selective apoptosis of AML by protein kinase-A-mediated de-subordination of RXR. Cancer Res. 65, 8754–8765 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Gaillard, E. et al. Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7. Proc. Natl Acad. Sci. USA 103, 9548–9553 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu, Q. et al. Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross- talk. Blood 99, 1014–1022 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, J. et al. Lineage restriction of the RARα gene expression in myeloid differentiation. Blood 98, 2563–2567 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Glasow, A., Prodromou, N., Xu, K., von Lindern, M. & Zelent, A. Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood 105, 341–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Schlenk, R. F. et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 18, 1798–1803 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Schlenk, R. F. et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 94, 54–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Martelli, M. P. et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 125, 3455–3465 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Boutzen, H. et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J. Exp. Med. 213, 483–497 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gianni, M. et al. p38αMAPK interacts with and inhibits RARα: suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells. Leukemia 26, 1850–1861 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Shao, X. et al. The HER2 inhibitor TAK165 sensitizes human acute myeloid leukemia cells to retinoic acid-induced myeloid differentiation by activating MEK/ERK mediated RARα/STAT1 axis. Sci. Rep. 6, 24589 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zeng, W. et al. Targeting to the non-genomic activity of retinoic acid receptor-gamma by acacetin in hepatocellular carcinoma. Sci. Rep. 7, 348 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Verhagen, H. J. et al. Primary acute myeloid leukemia cells with overexpression of EVI-1 are sensitive to all-trans retinoic acid. Blood 127, 458–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Churchman, M. L. et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28, 343–356 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lagishetty, V., Liu, N. Q. & Hewison, M. Vitamin D metabolism and innate immunity. Mol. Cell Endocrinol. 347, 97–105 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Rigby, W. F., Shen, L., Ball, E. D., Guyre, P. M. & Fanger, M. W. Differentiation of a human monocytic cell line by 1,25-dihydroxyvitamin D3 (calcitriol): a morphologic, phenotypic, and functional analysis. Blood 64, 1110–1115 (1984).

    CAS  PubMed  Google Scholar 

  117. Howell, A. L., Stukel, T. A., Bloomfield, C. D., Davey, F. R. & Ball, E. D. Induction of differentiation in blast cells and leukemia colony-forming cells from patients with acute myeloid leukemia. Blood 75, 721–729 (1990).

    CAS  PubMed  Google Scholar 

  118. Hughes, P. J., Marcinkowska, E., Gocek, E., Studzinski, G. P. & Brown, G. Vitamin D3-driven signals for myeloid cell differentiation — implications for differentiation therapy. Leuk. Res. 34, 553–565 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Paubelle, E. et al. Deferasirox and vitamin D improves overall survival in elderly patients with acute myeloid leukemia after demethylating agents failure. PLoS ONE 8, e65998 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Bigarella, C. L., Liang, R. & Ghaffari, S. Stem cells and the impact of ROS signaling. Development 141, 4206–4218 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Abdel-Wahab, O. & Levine, R. L. Metabolism and the leukemic stem cell. J. Exp. Med. 207, 677–680 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Liu, C. X., Zhou, H. C., Yin, Q. Q., Wu, Y. L. & Chen, G. Q. Targeting peroxiredoxins against leukemia. Exp. Cell Res. 319, 170–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Roth, M. et al. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood 120, 386–394 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Callens, C. et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J. Exp. Med. 207, 731–750 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186.e15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wen, Q. J. et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat. Med. 21, 1473–1480 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wen, Q. et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 150, 575–589 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ferrero, D., Tarella, C., Gallo, E., Ruscetti, F. W. & Breitman, T. R. Terminal differentiation of the human promyelocytic leukemia cell line, HL-60, in the absence of cell proliferation. Cancer Res. 42, 4421–4426 (1982).

    CAS  PubMed  Google Scholar 

  130. Griffin, J., Munroe, D., Major, P. & Kufe, D. Induction of differentiation of human myeloid leukemia cells by inhibitors of DNA synthesis. Exp. Hematol. 10, 774–781 (1982).

    CAS  PubMed  Google Scholar 

  131. Marks, P. et al. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Ferrara, F. F. et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61, 2–7 (2001).

    PubMed  Google Scholar 

  134. Gottlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Leiva, M. et al. Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia 26, 1630–1637 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Matthews, G. M. et al. Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies. Blood 126, 2392–2403 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Santoro, F. et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 121, 3459–3468 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Coude, M. M. et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 6, 17698–17712 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Berthon, C. et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 3, e186–e195 (2016).

    Article  PubMed  Google Scholar 

  147. Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Schwartz, B. E. et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res. 71, 2686–2696 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Cheson, B. D., Jasperse, D. M., Simon, R. & Friedman, M. A. A critical appraisal of low-dose cytosine arabinoside in patients with acute non-lymphocytic leukemia and myelodysplastic syndromes. J. Clin. Oncol. 4, 1857–1864 (1986).

    Article  CAS  PubMed  Google Scholar 

  152. Rasmussen, K. D. & Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Navada, S. C., Steinmann, J., Lubbert, M. & Silverman, L. R. Clinical development of demethylating agents in hematology. J. Clin. Invest. 124, 40–46 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Bots, M. et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 123, 1341–1352 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. El Hajj, H. et al. Therapy-induced selective loss of leukemia-initiating activity in murine adult T cell leukemia. J. Exp. Med. 207, 2785–2792 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. El-Sabban, M. E. et al. Arsenic-interferon-α-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-κB activation. Blood 96, 2849–2855 (2000).

    CAS  PubMed  Google Scholar 

  163. Kchour, G. et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon α, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 113, 6528–6532 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Chaturvedi, A. et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122, 2877–2887 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Kats, L. M. et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14, 329–341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Kernytsky, A. et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125, 296–303 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Stein, E. M. et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722–731 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chaturvedi, A. et al. Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo. Leukemia 31, 2020–2028 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Amatangelo, M. D. et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood 130, 732–741 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Storm, E. E. et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 529, 97–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Yan, M. et al. IKKalpha restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat. Commun. 5, 3661 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Grunwald, F. et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J. Nucl. Med. 39, 1555–1558 (1998).

    CAS  PubMed  Google Scholar 

  178. Schmutzler, C., Winzer, R., Meissner-Weigl, J. & Kohrle, J. Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem. Biophys. Res. Commun. 240, 832–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Handkiewicz-Junak, D. et al. 13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res. 2, 8 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Fernandez, C. A. et al. Effectiveness of retinoic acid treatment for redifferentiation of thyroid cancer in relation to recovery of radioiodine uptake. J. Endocrinol. Invest. 32, 228–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Marquette, A., Andre, J., Bagot, M., Bensussan, A. & Dumaz, N. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat. Struct. Mol. Biol. 18, 584–591 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Lehraiki, A. et al. Inhibition of melanogenesis by the antidiabetic metformin. J. Invest. Dermatol. 134, 2589–2597 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Pattabiraman, D. R. et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science 351, aad3680 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Pattabiraman, D. R. & Weinberg, R. A. Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb. Symp. Quant. Biol. 81, 11–19 (2017).

    Article  PubMed Central  Google Scholar 

  185. Xing, F. et al. The anti-Warburg effect elicited by the camp-pgc1alpha pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep. 18, 468–481 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Saha, S. K. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110–114 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Pusch, S. et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 133, 629–644 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Turcan, S. et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget 4, 1729–1736 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Abemayor, E., Chang, B. & Sidell, N. Effects of retinoic acid on the in vivo growth of human neuroblastoma cells. Cancer Lett. 55, 1–5 (1990).

    Article  CAS  PubMed  Google Scholar 

  190. Robson, J. A. & Sidell, N. Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid. Neuroscience 14, 1149–1162 (1985).

    Article  CAS  PubMed  Google Scholar 

  191. Thiele, C. J., Reynolds, C. P. & Israel, M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313, 404–406 (1985).

    Article  CAS  PubMed  Google Scholar 

  192. Moore, T. B., Koeffler, H. P., Yamashiro, J. M. & Wada, R. K. Vitamin D3 analogs inhibit growth and induce differentiation in LA-N-5 human neuroblastoma cells. Clin. Exp. Metastasis 14, 239–245 (1996).

    CAS  PubMed  Google Scholar 

  193. Rupniak, H. T. et al. Characteristics of a new human neuroblastoma cell line which differentiates in response to cyclic adenosine 3′:5′-monophosphate. Cancer Res. 44, 2600–2607 (1984).

    CAS  PubMed  Google Scholar 

  194. Wuarin, L., Verity, M. A. & Sidell, N. Effects of interferon-gamma and its interaction with retinoic acid on human neuroblastoma differentiation. Int. J. Cancer 48, 136–141 (1991).

    Article  CAS  PubMed  Google Scholar 

  195. Villablanca, J. G. et al. Phase I trial of 13-cis-retinoic acid in children with neuroblastoma following bone marrow transplantation. J. Clin. Oncol. 13, 894–901 (1995).

    Article  CAS  PubMed  Google Scholar 

  196. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N. Engl. J. Med. 341, 1165–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Matthay, K. K. et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J. Clin. Oncol. 27, 1007–1013 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Han, G., Chang, B., Connor, M. J. & Sidell, N. Enhanced potency of 9-cis versus all-trans-retinoic acid to induce the differentiation of human neuroblastoma cells. Differentiation 59, 61–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  199. Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 11, 77–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Kurimchak, A. M. et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep. 16, 1273–1286 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Prost, S. et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 525, 380–383 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Medyouf, H. The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood 129, 1617–1626 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Ghiaur, G. et al. Regulation of human hematopoietic stem cell self-renewal by the microenvironment's control of retinoic acid signaling. Proc. Natl Acad. Sci. USA 110, 16121–16126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Padua, R. A. et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat. Med. 9, 1413–1417 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Westervelt, P. et al. Adaptive immunity cooperates with liposomal all-trans-retinoic acid (ATRA) to facilitate long-term molecular remissions in mice with acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 99, 9468–9473 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hogg, S. J. et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep. 18, 2162–2174 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Kagoya, Y. et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest. 126, 3479–3494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hall, J. A., Grainger, J. R., Spencer, S. P. & Belkaid, Y. The role of retinoic acid in tolerance and immunity. Immunity 35, 13–22 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Chen, J. Y. et al. The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci. Rep. 6, 32428 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Licht, J. D. DNA methylation inhibitors in cancer therapy: the immunity dimension. Cell 162, 938–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  PubMed  CAS  Google Scholar 

  219. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13, 727–738 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Breitman, T. R., Collins, S. J. & Keene, B. R. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57, 1000–1004 (1981).

    CAS  PubMed  Google Scholar 

  221. Breitman, T. R., Selonick, S. E. & Collins, S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl Acad. Sci. USA 77, 2936 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Borrow, J., Goddart, A., Sheer, D. & Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249, 1577–1580 (1990).

    Article  CAS  PubMed  Google Scholar 

  223. Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  224. de Thé, H., Vivanco-Ruiz, M.d. M., Tiollais, P., Stunnenberg, H. & Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature 343, 177–180 (1990).

    Article  PubMed  Google Scholar 

  225. Oussama, A., Lo-Coco, F. & Sanz, M. A. Acute Promyelocytic Leukemia: A Clinical Guide (Springer International Publishing, 2018).

    Google Scholar 

  226. Rego, E. M. et al. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. He, L.-Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat. Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  228. He, L. et al. Two critical hits for promyelocytic leukemia. Mol. Cell 6, 1131–1141 (2000).

    Article  CAS  PubMed  Google Scholar 

  229. Koken, M. H. M. et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant tt(11;17)(q23;q21) APL patient. Oncogene 18, 1113–1118 (1999).

    Article  CAS  PubMed  Google Scholar 

  230. Lallemand-Breitenbach, V. et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043–1052 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author's laboratory is supported by Collège de France, INSERM, Centre National de la Recherche Scientifique (CNRS), Université Paris-Diderot, Ligue Contre le Cancer, Institut National du Cancer and the European Research Council. The author apologizes to investigators whose work could not be cited because of space constraints. The author thanks F. Maloumian for help with the figures and friends and colleagues for critical reading of the manuscript, in particular A. Bazarbachi, O. Hermine, L. Degos, P. Fenaux and V. Lallemand-Breitenbach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues de Thé.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Thé, H. Differentiation therapy revisited. Nat Rev Cancer 18, 117–127 (2018). https://doi.org/10.1038/nrc.2017.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.103

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer