Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Altered metabolite levels in cancer: implications for tumour biology and cancer therapy

Key Points

  • Cancer-associated expression changes and mutations in metabolic enzymes can alter levels of metabolites.

  • The accumulation of certain metabolites can support cancer cell proliferation by increasing flux through anabolic metabolism.

  • Competitive inhibition of α-ketoglutarate-dependent dioxygenases by 2-hydroxyglutarate (2HG), succinate and fumarate can promote cancer-associated signalling.

  • Reactive metabolites, such as reactive oxygen species, fumarate, methylglyoxal and fumarylacetoacetate can affect cancer phenotypes.

  • Fumarylacetoacetate is an oncometabolite in the liver of patients with fumarylacetoacetate hydrolase deficiency.

  • Metabolite level alterations in cancer present new opportunities to design novel therapeutics.

Abstract

Altered cell metabolism is a characteristic feature of many cancers. Aside from well-described changes in nutrient consumption and waste excretion, altered cancer cell metabolism also results in changes to intracellular metabolite concentrations. Increased levels of metabolites that result directly from genetic mutations and cancer-associated modifications in protein expression can promote cancer initiation and progression. Changes in the levels of specific metabolites, such as 2-hydroxyglutarate, fumarate, succinate, aspartate and reactive oxygen species, can result in altered cell signalling, enzyme activity and/or metabolic flux. In this Review, we discuss the mechanisms that lead to changes in metabolite concentrations in cancer cells, the consequences of these changes for the cells and how they might be exploited to improve cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic pathway map highlighting the relationship between central carbon metabolism and metabolites relevant to cancer.
Figure 2: Mechanisms leading to changes in metabolite levels.
Figure 3: Effect of metabolites on α-ketoglutarate-dependent dioxygenase activity.
Figure 4: Reactions involving reactive metabolites.
Figure 5: Feedback signalling pathways involved in the response to reactive metabolites.

Similar content being viewed by others

References

  1. Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kerr, E. M., Gaude, E., Turrell, F. K., Frezza, C. & Martins, C. P. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531, 110–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stine, Z. E., Walton, Z. E., Altman, B. J., Hsieh, A. L. & Dang, C. V. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dillon, B. J. et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 100, 826–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Grompe, M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin. Liver Dis. 21, 563–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009). This is the first report that cancer-associated IDH mutations produce the oncometabolite D -2HG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002). This paper was the first to identify that familial FH mutations can predispose patients to kidney cancer and other neoplasms.

    Article  CAS  PubMed  Google Scholar 

  20. Adam, J. et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep. 3, 1440–1448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bardella, C., Pollard, P. J. & Tomlinson, I. SDH mutations in cancer. Biochim. Biophys. Acta 1807, 1432–1443 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Delage, B. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126, 2762–2772 (2010).

    CAS  PubMed  Google Scholar 

  27. Rabinovich, S. et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527, 379–383 (2015). This paper showed that loss of ASS1 expression leads to the accumulation of aspartate to support anabolic metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamanaka, R. B. & Chandel, N. S. Targeting glucose metabolism for cancer therapy. J. Exp. Med. 209, 211–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 49 (Suppl. 2), 24S–42S (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Clark, O., Yen, K. & Mellinghoff, I. K. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin. Cancer Res. 22, 1837–1842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi, C. et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18, 624–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin, C. C. et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci. Rep. 2, 785 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hitosugi, T. et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell 44, 864–877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dupuy, F. et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 22, 577–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, L. et al. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab. 1, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Keller, K. E., Tan, I. S. & Lee, Y. S. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338, 1069–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mazurek, S., Boschek, C. B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol. 15, 300–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Israelsen, W. J. et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anastasiou, D. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lunt, S. Y. et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    Article  CAS  Google Scholar 

  53. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    Article  CAS  Google Scholar 

  54. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scott, D. A. et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem. 286, 42626–42634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fendt, S. M. et al. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sasaki, M. et al. D-2-Hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 26, 2038–2049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaelin, W. G. Jr. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 76, 335–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol. 4, 152–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, C. et al. Induction of sarcomas by mutant IDH2. Genes Dev. 27, 1986–1998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013). This paper showed that the oncometabolite D -2HG is sufficient to promote cancer phenotypes, cytokine independence and a block in differentiation in haematopoietic cells.

    Article  CAS  PubMed  Google Scholar 

  72. Saha, S. K. et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Aghili, M., Zahedi, F. & Rafiee, E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neurooncol. 91, 233–236 (2009).

    Article  PubMed  Google Scholar 

  75. Fan, J. et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shim, E. H. et al. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290–1298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Terunuma, A. et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 124, 398–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoekstra, A. S. et al. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 6, 38777–38788 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Gimenez-Roqueplo, A. P. et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet. 69, 1186–1197 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hewitson, K. S. et al. Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem. 282, 3293–3301 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. O'Flaherty, L. et al. Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum. Mol. Genet. 19, 3844–3851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. MacKenzie, E. D. et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).

    CAS  PubMed  Google Scholar 

  93. Irani, K. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275, 1649–1652 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Karisch, R. et al. Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 146, 826–840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arnold, R. S. et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl Acad. Sci. USA 98, 5550–5555 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bell, E. L., Emerling, B. M., Ricoult, S. J. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986–2996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Finley, L. W. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19, 416–428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park, J. S. et al. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum. Mol. Genet. 18, 1578–1589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sharma, L. K. et al. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum. Mol. Genet. 20, 4605–4616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008). This paper showed that mutations in mitochondrial DNA that increase ROS levels are sufficient to confer a metastatic phenotype.

    Article  CAS  PubMed  Google Scholar 

  104. Baty, J. W., Hampton, M. B. & Winterbourn, C. C. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem. J. 389, 785–795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Cox, A. G., Winterbourn, C. C. & Hampton, M. B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313–325 (2010).

    Article  CAS  Google Scholar 

  107. Sobotta, M. C. et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70 (2015). This paper provides a proof of concept for the 'redox relay' mechanism of ROS signalling in mammalian cells in which thiol-containing antioxidant enzymes can use ROS to oxidize specific cysteine targets.

    Article  CAS  PubMed  Google Scholar 

  108. Woo, H. A. et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, S. R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2 . J. Biol. Chem. 277, 20336–20342 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, G. et al. Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci. Rep. 6, 18928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Hakimi, A. A. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29, 104–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lo, T. W., Westwood, M. E., McLellan, A. C., Selwood, T. & Thornalley, P. J. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, and Nα-acetyllysine, and bovine serum albumin. J. Biol. Chem. 269, 32299–32305 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Rabbani, N. & Thornalley, P. J. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochem. Soc. Trans. 42, 425–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Sousa Silva, M., Gomes, R. A., Ferreira, A. E., Ponces Freire, A. & Cordeiro, C. The glyoxalase pathway: the first hundred years ... and beyond. Biochem. J. 453, 1–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Van Heijst, J. W., Niessen, H. W., Hoekman, K. & Schalkwijk, C. G. Advanced glycation end products in human cancer tissues: detection of Nε-(carboxymethyl)lysine and argpyrimidine. Ann. NY Acad. Sci. 1043, 725–733 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Chiavarina, B. et al. Triple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes. Oncotarget 5, 5472–5482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Santarius, T. et al. GLO1 — a novel amplified gene in human cancer. Genes Chromosomes Cancer 49, 711–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hosoda, F. et al. Integrated genomic and functional analyses reveal glyoxalase I as a novel metabolic oncogene in human gastric cancer. Oncogene 34, 1196–1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, S. et al. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 7, 2079–2090 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Guo, Y. et al. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol. Ther. 17, 169–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vistoli, G. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res. 47 (Suppl. 1), 3–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Moellering, R. E. & Cravatt, B. F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341, 549–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51, 236–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Sudarshan, S. et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species. Mol. Cell. Biol. 29, 4080–4090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bardella, C. et al. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J. Pathol. 225, 4–11 (2011). This paper was the first to identify robust cysteine succination in FH -null cancer cells.

    Article  CAS  PubMed  Google Scholar 

  131. Joseph, N. M. et al. Morphology and immunohistochemistry for 2SC and FH aid in detection of fumarate hydratase gene aberrations in uterine leiomyomas from young patients. Am. J. Surg. Pathol. 39, 1529–1539 (2015).

    Article  PubMed  Google Scholar 

  132. Ternette, N. et al. Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep. 3, 689–700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tong, W. H. et al. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20, 315–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jorquera, R. & Tanguay, R. M. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem. Biophys. Res. Commun. 232, 42–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Lantum, H. B., Liebler, D. C., Board, P. G. & Anders, M. W. Alkylation and inactivation of human glutathione transferase zeta (hGSTZ1-1) by maleylacetone and fumarylacetone. Chem. Res. Toxicol. 15, 707–716 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Lindblad, B., Lindstedt, S. & Steen, G. On the enzymic defects in hereditary tyrosinemia. Proc. Natl Acad. Sci. USA 74, 4641–4645 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jorquera, R. & Tanguay, R. M. Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum. Mol. Genet. 10, 1741–1752 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10, 453–460 (1995). This paper showed that blocking FAA production with NTBC prevents the effects of HT1 and HCC formation.

    Article  CAS  PubMed  Google Scholar 

  139. Angileri, F. et al. Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1. Biochim. Biophys. Acta 1852, 2603–2617 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Marhenke, S. et al. Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology 48, 487–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Willenbring, H. et al. Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. Cancer Cell 14, 59–67 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Al-Dhalimy, M., Overturf, K., Finegold, M. & Grompe, M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol. Genet. Metab. 75, 38–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Weinberg, A. G., Mize, C. E. & Worthen, H. G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J. Pediatr. 88, 434–438 (1976).

    Article  CAS  PubMed  Google Scholar 

  144. Spitz, D. R., Sullivan, S. J., Malcolm, R. R. & Roberts, R. J. Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic. Biol. Med. 11, 415–423 (1991).

    Article  CAS  PubMed  Google Scholar 

  145. Levonen, A. L. et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378, 373–382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Karihtala, P., Kauppila, S., Puistola, U. & Jukkola-Vuorinen, A. Divergent behaviour of oxidative stress markers 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (HNE) in breast carcinogenesis. Histopathology 58, 854–862 (2011).

    Article  PubMed  Google Scholar 

  147. Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 21, 894–899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    Article  PubMed  CAS  Google Scholar 

  150. Tello, D. et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting complex I activity. Cell Metab. 14, 768–779 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Dinkova-Kostova, A. T. et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl Acad. Sci. USA 99, 11908–11913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fourquet, S., Guerois, R., Biard, D. & Toledano, M. B. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 285, 8463–8471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 5 11–523 (2011).

    Article  CAS  Google Scholar 

  154. Dieter, M. Z. et al. Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. Free Radic. Biol. Med. 35, 351–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Jaramillo, M. C. & Zhang, D. D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 27, 2179–2191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Satoh, H., Moriguchi, T., Takai, J., Ebina, M. & Yamamoto, M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 73, 4158–4168 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Sayin, V. I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl Med. 6, 221ra215 (2014). This paper showed that exogenous antioxidants are not beneficial for autochthonous cancer models and can instead increase tumour progression.

    Article  CAS  Google Scholar 

  160. Omenn, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  161. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306, 1549–1556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xue, M. et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem. J. 443, 213–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Langlois, C. et al. Rescue from neonatal death in the murine model of hereditary tyrosinemia by glutathione monoethylester and vitamin C treatment. Mol. Genet. Metab. 93, 306–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Jorquera, R. & Tanguay, R. M. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis. FASEB J. 13, 2284–2298 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Deng, G. et al. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J. Biol. Chem. 290, 762–774 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Davis, M. I. et al. Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1. J. Biol. Chem. 289, 13717–13725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett. 3, 850–855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Andronesi, O. C. et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl Med. 4, 116ra114 (2012).

    Article  CAS  Google Scholar 

  169. De la Fuente, M. I. et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol. 18, 283–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Andronesi, O. C. et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin. Cancer Res. 22, 1632–1641 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Tateishi, K. et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mullen, A. R. et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 7, 1679–1690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lussey-Lepoutre, C. et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Long, Y. et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol. Cancer Ther. 12, 2581–2590 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S. & Clark, M. A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62, 5443–5450 (2002).

    CAS  PubMed  Google Scholar 

  177. Miraki-Moud, F. et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 125, 4060–4068 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Tomlinson, B. K. et al. Phase I trial of arginine deprivation therapy with ADI-PEG 20 plus docetaxel in patients with advanced malignant solid tumors. Clin. Cancer Res. 21, 2480–2486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zou, X. Y. et al. Glyoxalase I is differentially expressed in cutaneous neoplasms and contributes to the progression of squamous cell carcinoma. J. Invest. Dermatol. 135, 589–598 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Sakamoto, H. et al. Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin. Cancer Res. 7, 2513–2518 (2001).

    CAS  PubMed  Google Scholar 

  181. Thornalley, P. J. et al. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem. Pharmacol. 51, 1365–1372 (1996).

    Article  CAS  PubMed  Google Scholar 

  182. Kuhla, B. et al. Pathological effects of glyoxalase I inhibition in SH-SY5Y neuroblastoma cells. J. Neurosci. Res. 83, 1591–1600 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10, 241–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl Med. 7, 308re308 (2015).

    Article  Google Scholar 

  189. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral fellowship, PF-15-096-01-TBE from the American Cancer Society to L.B.S., US National Institutes of Health (NIH) (T32 GM007753) to D.Y.G., the Burroughs Wellcome Fund, the Ludwig Center at the Massachusetts Institute of Technology (MIT), and the NIH (P30CA1405141, GG006413 and R01 CA168653) to M.G.V.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Vander Heiden.

Ethics declarations

Competing interests

M.G.V.H. is a consultant and Scientific Advisory Board (SAB) member for Agios Pharmaceuticals, which seeks to target metabolism for cancer therapy, and is also an SAB member for Aeglea Biotherapeutics.

PowerPoint slides

Glossary

Catabolic

The breakdown of complex molecules into simpler molecules, by which energy is extracted from the breakdown process to produce ATP, reducing equivalents or other intermediates.

Anabolic

The production of complex molecules from simpler molecules, including for the purpose of accumulating biomass. Requires the input of energy to catalyse otherwise unfavourable reactions.

Oncometabolite

A metabolite that, when present at high enough levels, is sufficient to promote the transformation of a cell or to confer a cancer-associated phenotype.

Steady-state concentrations

When the concentrations of metabolites are constant over time. Metabolic perturbations that alter the production and/or consumption rates of metabolites will result in new steady-state concentrations.

By-products or error products of metabolism

Metabolites that are generated as a result of non-enzyme-catalysed reactions or from the promiscuous activity of an enzyme acting on a non-canonical substrate. Typically, these metabolites are not used in support of established catabolic or anabolic metabolic pathways.

Metabolic flux

Indicates the rate of a metabolic reaction or a series of reactions in a pathway. Flux does not necessarily change as a result of enzyme expression or a change in metabolite levels.

Reductive carboxylation

The NADPH-consuming, CO2-fixing reaction that is catalysed by isocitrate dehydrogenase 1 (IDH1) or IDH2 to reduce and carboxylate α-ketoglutarate (α-KG) and produce isocitrate. Although used in this Review to refer to the reductive carboxylation reaction catalysed by IDH, reductive carboxylation of other substrates to produce additional products is also possible.

α-KG-dependent dioxygenases

A family of enzymes that use O2, α-ketoglutarate (α-KG) and another substrate to produce a hydroxylated product, succinate and CO2. This family of enzymes includes the prolyl hydroxylases (PHDs), the TET family of cytosine hydroxymethylases and the Jumonji (JMJ) family of histone demethylases.

Stereospecific

Describes a reaction catalysed by an enzyme that has specificity for a stereoisomer of the substrate and/or product.

Reactive metabolites

Metabolites that are sufficiently reactive to form covalent bonds with other biomolecules under physiological conditions in the absence of enzyme catalysis. These metabolites can be by-products of metabolism, as is the case with reactive oxygen species and methylglyoxal, or can exist as intermediary metabolites of canonical metabolic pathways, as is the case with fumarate and fumarylacetoacetate.

Michael addition

A conjugate addition reaction in which a nucleophile, such as a thiolate anion from glutathione, undergoes a nucleophilic attack on an α,β-unsaturated carbonyl compound.

Synthetic lethality

A condition in which the combination of two genetic mutations and/or chemical inhibitions leads to cell death, whereas each individual effect does not.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, L., Gui, D. & Heiden, M. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16, 680–693 (2016). https://doi.org/10.1038/nrc.2016.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.85

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer