Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape

Key Points

  • Alterations in the epigenetic landscape are a hallmark of human cancer. Cancer-associated changes in the covalent modifications of DNA and histones may arise from mutations in, or the altered expression of, chromatin modifiers and/or non-coding RNAs. Recent studies show that the interplay between upstream signalling pathways and chromatin modifications represents an important mechanism controlling the cancer epigenome.

  • Kinase signalling pathways can modify the epigenome via direct phosphorylation of histones or chromatin modifiers, leading to changes in chromatin structure and gene expression. These pathways can be hijacked by oncogenic mutations to aberrantly modulate chromatin modifications. Oncogenic signalling pathways can also contribute to cancer-specific methylation patterns by controlling global DNA methyltransferase activity or the accessibility of certain regulatory elements to DNA methylation.

  • Histone modifications are involved in various cellular processes, including transcription activation, apoptosis, DNA repair and mitotic chromatin condensation. The dynamic process of phosphorylation (for example, at histones H3S10 and H3S28) can impair the deposition of potentially more stable methyl marks on adjacent lysine residues; such crosstalk can amplify the influence of signalling pathways on chromatin structure.

  • Chromatin modifiers, such as enhancer of zeste homologue 2 (EZH2), BMI1, p300 and CREB binding protein (CBP), are phosphorylated by multiple upstream signalling kinases, indicating that they can function as points of convergence for these signalling pathways. The end result of these phosphorylation events can vary depending on their site-specific and cell type-specific context.

  • The DNA damage response represents a major signalling pathway that alters chromatin structure via the phosphorylation of histones and histone modifiers. The decision of cells to undergo cell cycle arrest and repair damaged DNA or undergo cell death reflects the integration of various upstream signals.

  • The interplay between signalling pathways and the epigenome may have important implications for therapeutic strategies for cancer. Treating tumour cells with kinase inhibitors may not be sufficient to restore the deregulated gene expression programmes that are found in these cells. Combining kinase inhibitors with epigenetically focused therapies may more effectively reverse the epigenetic features that maintain the transformed phenotype in cancer cells, leading to improved patient outcomes.

Abstract

Cancer, once thought to be caused largely by genetic alterations, is now considered to be a mixed genetic and epigenetic disease. The epigenetic landscape, which is dictated by covalent DNA and histone modifications, is profoundly altered in transformed cells. These abnormalities may arise from mutations in, or altered expression of, chromatin modifiers. Recent reports on the interplay between cellular signalling pathways and chromatin modifications add another layer of complexity to the already complex regulation of the epigenome. In this Review, we discuss these new studies and how the insights they provide can contribute to a better understanding of the molecular pathogenesis of neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histone modifications regulated by the JAK–STAT pathway.
Figure 2: Regulation of Polycomb group protein repressive complexes by signalling pathways.
Figure 3: The extensive regulation of CBP and p300 histone acetyltransferase activity by signalling kinases.
Figure 4: The DNA damage response modulates chromatin modifications.
Figure 5: Oncogenic signalling regulates DNA methyltransferase 1 activity.
Figure 6: The epigenetic memory of signalling.

Similar content being viewed by others

References

  1. O'Hare, T., Zabriskie, M. S., Eiring, A. M. & Deininger, M. W. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat. Rev. Cancer 12, 513–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kurokawa, H. & Arteaga, C. L. Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer. Clin. Cancer Res. 7, 4436s–4442s; discussion 4411s–4412s (2001).

    CAS  PubMed  Google Scholar 

  3. Gibney, G. T. & Zager, J. S. Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin. Drug Metab. Toxicol. 9, 893–899 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Atallah, E. & Verstovsek, S. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms. Expert Rev. Anticancer Ther. 9, 663–670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cha, T. L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310 (2005). This is the first demonstration that phosphorylation of a chromatin modifier can affect chromatin structure and gene expression.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y. et al. Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci. Signal. 5, ra77 (2012). This study provides a mechanism for the increased p16INK4A and p19ARF expression seen in cancer cells with active AKT signalling.

    PubMed  PubMed Central  Google Scholar 

  7. Liu, F. et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19, 283–294 (2011). This work demonstrated a gain of function for a mutant, oncogenic kinase that enables it to directly control chromatin modifications and gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riggs, A. D. & Jones, P. A. 5-methylcytosine, gene regulation, and cancer. Adv. Cancer Res. 40, 1–30 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2 (Suppl. 1), S4–S11 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Popovic, R. & Licht, J. D. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov. 2, 405–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Healy, S., Khan, P., He, S. & Davie, J. R. Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective. Biochem. Cell Biol. 90, 39–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Hans, F. & Dimitrov, S. Histone H3 phosphorylation and cell division. Oncogene 20, 3021–3027 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barratt, M. J., Hazzalin, C. A., Cano, E. & Mahadevan, L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tiwari, V. K. et al. A chromatin-modifying function of JNK during stem cell differentiation. Nat. Genet. 44, 94–100 (2012).

    Article  CAS  Google Scholar 

  22. Zippo, A., De Robertis, A., Serafini, R. & Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol. 9, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Park, C. H. & Kim, K. T. Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ. PLoS ONE 7, e44307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winter, S. et al. 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J. 27, 88–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Walter, W. et al. 14-3-3 interaction with histone H3 involves a dual modification pattern of phosphoacetylation. Mol. Cell. Biol. 28, 2840–2849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vicent, G. P. et al. Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol. Cell 24, 367–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Lau, P. N. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl Acad. Sci. USA 108, 2801–2806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, H. S. et al. Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res. 65, 5818–5827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perez-Cadahia, B. et al. Role of MSK1 in the malignant phenotype of Ras-transformed mouse fibroblasts. J. Biol. Chem. 286, 42–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Metzger, E. et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell Biol. 10, 53–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Metzger, E. et al. Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature 464, 792–796 (2010). This article presents an excellent example of crosstalk between histone phosphorylation and methylation on nearby amino acid residues to control gene expression.

    Article  CAS  PubMed  Google Scholar 

  33. Koivunen, J., Aaltonen, V. & Peltonen, J. Protein kinase C (PKC) family in cancer progression. Cancer Lett. 235, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Dawson, M. A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009). This report identifies a novel nuclear function of JAK2 in the phosphorylation of H3Y41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levine, R. L., Pardanani, A., Tefferi, A. & Gilliland, D. G. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat. Rev. Cancer 7, 673–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl Acad. Sci. USA 95, 3890–3895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCormack, M. P. et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327, 879–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Griffiths, D. S. et al. LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat. Cell Biol. 13, 13–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Dawson, M. A. et al. Three distinct patterns of histone H3Y41 phosphorylation mark active genes. Cell Rep. 2, 470–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Baek, S. H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Pietersen, A. M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Su, Y., Deng, B. & Xi, R. Polycomb group genes in stem cell self-renewal: a double-edged sword. Epigenetics 6, 16–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  48. Yoo, K. H. & Hennighausen, L. EZH2 methyltransferase and H3K27 methylation in breast cancer. Int. J. Biol. Sci. 8, 59–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saudy, N. S. et al. BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol. Dis. 53, 194–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Yamazaki, H. et al. Stem cell self-renewal factors Bmi1 and HMGA2 in head and neck squamous cell carcinoma: clues for diagnosis. Lab. Invest. 93, 1331–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Cui, H. et al. Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am. J. Pathol. 170, 1370–1378 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shafaroudi, A. M. et al. Overexpression of BMI1, a polycomb group repressor protein, in bladder tumors: a preliminary report. Urol. J. 5, 99–105 (2008).

    PubMed  Google Scholar 

  61. Cao, L. et al. BMI1 as a novel target for drug discovery in cancer. J. Cell. Biochem. 112, 2729–2741 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Su, I. H. et al. Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Voncken, J. W. et al. Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J. Cell Sci. 112, 4627–4639 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Voncken, J. W. et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J. Biol. Chem. 280, 5178–5187 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, J., Hwangbo, J. & Wong, P. K. p38 MAPK-mediated Bmi-1 down-regulation and defective proliferation in ATM-deficient neural stem cells can be restored by Akt activation. PLoS ONE 6, e16615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nacerddine, K. et al. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J. Clin. Invest. 122, 1920–1932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ginjala, V. et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol. Cell. Biol. 31, 1972–1982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ismail, I. H., Andrin, C., McDonald, D. & Hendzel, M. J. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 191, 45–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kharas, M. G. & Gritsman, K. Akt: a double-edged sword for hematopoietic stem cells. Cell Cycle 9, 1223–1224 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Cloos, P. A., Christensen, J., Agger, K. & Helin, K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22, 1115–1140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berry, W. L. & Janknecht, R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 73, 2936–2942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lv, T. et al. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE 7, e35065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao, Z. K. et al. Overexpression of lysine specific demethylase 1 predicts worse prognosis in primary hepatocellular carcinoma patients. World J. Gastroenterol. 18, 6651–6656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jie, D. et al. Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer. Dig. Dis. Sci. 58, 1581–1589 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Yu, Y. et al. High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun. 437, 192–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171–1176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nigro, J. M. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705–708 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Krause, C. D. et al. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther. 113, 50–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Pahlich, S., Zakaryan, R. P. & Gehring, H. Protein arginine methylation: cellular functions and methods of analysis. Biochim. Biophys. Acta 1764, 1890–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Zurita-Lopez, C. I., Sandberg, T., Kelly, R. & Clarke, S. G. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J. Biol. Chem. 287, 7859–7870 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Branscombe, T. L. et al. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971–32976 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Rho, J. et al. Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276, 11393–11401 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jansson, M. et al. Arginine methylation regulates the p53 response. Nat. Cell Biol. 10, 1431–1439 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Tan, C. P. & Nakielny, S. Control of the DNA methylation system component MBD2 by protein arginine methylation. Mol. Cell. Biol. 26, 7224–7235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11, 1990–1994 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Stopa, N., Krebs, J. E. & Shechter, D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci. 72, 2041–2059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, L., Pal, S. & Sif, S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28, 6262–6277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Y. et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov. 5, 288–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Chan-Penebre, E. et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Pollack, B. P. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274, 31531–31542 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, F. et al. Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J. Clin. Invest. 125, 3532–3544 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Aggarwal, P. et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18, 329–340 (2010). This study demonstrates an alternative mechanism by which kinase signalling can control a chromatin modifier, by phosphorylating and regulating its co-factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koh, S. S., Chen, D., Lee, Y. H. & Stallcup, M. R. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276, 1089–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl Acad. Sci. USA 104, 12318–12323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng, Q. et al. Biochemical control of CARM1 enzymatic activity by phosphorylation. J. Biol. Chem. 284, 36167–36174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vo, N. & Goodman, R. H. CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem. 276, 13505–13508 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Roelfsema, J. H. & Peters, D. J. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev. Mol. Med. 9, 1–16 (2007).

    Article  PubMed  Google Scholar 

  107. Iyer, N. G., Ozdag, H. & Caldas, C. p300/CBP and cancer. Oncogene 23, 4225–4231 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Rozman, M. et al. Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer 40, 140–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Banerjee, A. C. et al. The adenovirus E1A 289R and 243R proteins inhibit the phosphorylation of p300. Oncogene 9, 1733–1737 (1994).

    CAS  PubMed  Google Scholar 

  110. Wang, S. A. et al. Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression. Biochim. Biophys. Acta 1843, 1135–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, W. C. & Chen, C. C. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592–6602 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yuan, L. W., Soh, J. W. & Weinstein, I. B. Inhibition of histone acetyltransferase function of p300 by PKCδ. Biochim. Biophys. Acta 1592, 205–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Yuan, L. W. & Gambee, J. E. Phosphorylation of p300 at serine 89 by protein kinase C. J. Biol. Chem. 275, 40946–40951 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Yang, W. et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276, 38341–38344 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Jang, E. R., Choi, J. D., Jeong, G. & Lee, J. S. Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem. Biophys. Res. Commun. 397, 637–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Brouillard, F. & Cremisi, C. E. Concomitant increase of histone acetyltransferase activity and degradation of p300 during retinoic acid-induced differentiation of F9 cells. J. Biol. Chem. 278, 39509–39516 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Poizat, C., Puri, P. L., Bai, Y. & Kedes, L. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol. Cell. Biol. 25, 2673–2687 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ait-Si-Ali, S. et al. Phosphorylation by p44 MAP kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun. 262, 157–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Ait-Si-Ali, S. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Impey, S. et al. Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34, 235–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Huang, W. C., Ju, T. K., Hung, M. C. & Chen, C. C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell 26, 75–87 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Goodman, R. H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Martin, M., Kettmann, R. & Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene 26, 5450–5467 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Pluemsampant, S., Safronova, O. S., Nakahama, K. & Morita, I. Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int. J. Cancer 122, 333–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Cheung, W. L. et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol. 15, 656–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Utley, R. T., Lacoste, N., Jobin-Robitaille, O., Allard, S. & Cote, J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol. Cell. Biol. 25, 8179–8190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shimada, M. et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132, 221–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010). This article reports the identification of MLL as a key effector downstream of the DNA damage response and speculates that the deregulation of the S-phase checkpoint can contribute to the oncogenicity of MLL fusion proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu, Q. & Wani, A. A. Histone modifications: crucial elements for damage response and chromatin restoration. J. Cell. Physiol. 223, 283–288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lord, C. J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Robertson, K. D. DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139–3155 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bonilla-Henao, V., Martinez, R., Sobrino, F. & Pintado, E. Different signaling pathways inhibit DNA methylation activity and up-regulate IFN-γ in human lymphocytes. J. Leukoc. Biol. 78, 1339–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. MacLeod, A. R., Rouleau, J. & Szyf, M. Regulation of DNA methylation by the Ras signaling pathway. J. Biol. Chem. 270, 11327–11337 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Wu, J. et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl Acad. Sci. USA 90, 8891–8895 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mizuno, S. et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172–1179 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Yu, Z. et al. DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-α/breast cancer susceptibility gene 1 and poor prognosis. Mol. Carcinog. 54, 707–719 (2014).

    Article  PubMed  CAS  Google Scholar 

  145. el-Deiry, W. S. et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl Acad. Sci. USA 88, 3470–3474 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lavoie, G. & St-Pierre, Y. Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Biochem. Biophys. Res. Commun. 409, 187–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Esteve, P. O. et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol. 18, 42–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Rouleau, J., MacLeod, A. R. & Szyf, M. Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J. Biol. Chem. 270, 1595–1601 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Hervouet, E. et al. Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS ONE 5, e11333 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sugiyama, Y. et al. The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ɛ. Biochem. J. 427, 489–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Deplus, R. et al. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 8, 743–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Patra, S. K. Ras regulation of DNA-methylation and cancer. Exp. Cell Res. 314, 1193–1201 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Papageorgis, P. et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res. 70, 968–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ren, M. et al. Impaired retinoic acid (RA) signal leads to RARβ2 epigenetic silencing and RA resistance. Mol. Cell. Biol. 25, 10591–10603 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Leu, Y. W. et al. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res. 64, 8184–8192 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 27–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Peschansky, V. J. & Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Molitor, A. & Shen, W. H. The polycomb complex PRC1: composition and function in plants. J. Genet. Genom. 40, 231–238 (2013).

    Article  CAS  Google Scholar 

  165. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Reddy, K. L. & Feinberg, A. P. Higher order chromatin organization in cancer. Semin. Cancer Biol. 23, 109–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Timp, W. & Feinberg, A. P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 13, 497–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Lau, A. T. et al. Phosphorylation of histone H2B serine 32 is linked to cell transformation. J. Biol. Chem. 286, 26628–26637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mahajan, K., Fang, B., Koomen, J. M. & Mahajan, N. P. H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat. Struct. Mol. Biol. 19, 930–937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hurd, P. J. et al. Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J. Biol. Chem. 284, 16575–16583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, F. et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330, 231–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kysela, B., Chovanec, M. & Jeggo, P. A. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1. Proc. Natl Acad. Sci. USA 102, 1877–1882 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee, J. H. et al. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage. Nucleic Acids Res. 43, 4505–4516 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank F.-c. Yang and L. Morey for their helpful advice, and D. Prou for her assistance with manuscript preparation. The S.D.N. laboratory is supported by National Cancer Institute Grant RO1 CA166835-01, F.L. is supported by an American Cancer Society Institute Research Grant Pilot Project Award, and W.L. is supported by National Natural Science Foundation of China Grant 81470334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Nimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Myeloproliferative neoplasms

(MPNs). A group of diseases that affect normal blood cell production in the bone marrow, which manifests as an overproduction of one or more blood cell types (red cells, white cells or platelets).

Genomic imprinting

An epigenetic phenomenon that results in a mono-allelic, parental-specific expression pattern of a subset of genes. For example, if the paternal allele of a certain gene is imprinted, and thereby silenced, then only the maternal allele of this gene can be expressed.

CpG island

A DNA region with at least 200 base pairs, and a CG percentage of more than 50%. Methylation of the CpG sites within the gene promoter can lead to gene silencing.

Transposable elements

(TEs). Small pieces of DNA that can move within the genome. TEs can modify DNA by causing mutations, inducing or repressing nearby genes, or altering levels of protein synthesis.

Immediate-early genes

A class of genes that are quickly inducible in response to infection or extracellular signals and do not require new protein synthesis. They consist of diverse proteins including transcription factors and cytokines and often regulate cell growth and differentiation.

Myelodysplastic syndrome

(MDS). A haematological medical condition, also known as myelodysplasia, that is characterized by ineffective production of myeloid lineage blood cells and a disorder of the haematopoietic stem cells in the bone marrow. Patients with MDS are at high risk of progression to leukaemia.

Oesophageal squamous cell carcinoma

A type of cancer that begins in the flat squamous cells lining the oesophagus. Smoking and heavy alcohol use increase the risk of this disease.

Lung sarcomatoid carcinoma

A rare and heterogeneous group of aggressive lung carcinomas, with histological features that resemble those of a sarcoma.

Desmoplastic medulloblastoma

A histological subtype of medulloblastoma, the most common malignant brain tumour in children, that is characterized by nodular structures that contain reticulin-free zones surrounded by densely packed highly proliferative cells.

Non-Hodgkin lymphomas

Lymphomas other than Hodgkin disease, classified as nodular or diffuse depending on the tumour pattern and cell type.

S-adenosylmethionine

A universal methyl group donor that is critical for the synthesis of hormones, phospholipids and macromolecules in the cell. An important cofactor for methyltransferase proteins.

Rubinstein–Taybi syndrome

(RTS). A condition characterized by short stature, moderate to severe intellectual disability, distinctive facial features and broad thumbs and first toes. Mutations in the genes CREBBP and EP300 (encoding CREB binding protein (CBP) and p300, respectively) are seen in some people with this condition.

von Hippel–Lindau protein

An E3 ubiquitin protein ligase that functions as part of the VCB–CUL2 complex, and is classified as a tumour suppressor.

Fanconi anaemia

(FA). A rare inherited disease that results from mutations in a subset of genes involved in the DNA repair response. Patients with FA generally develop severe anaemia and may have physical abnormalities. They are at high risk of developing certain types of cancer.

Ataxia telangiectasia

(A-T). An inherited disease that affects several body systems, including the immune system and the central nervous system; patients with A-T have a high rate of cancer.

Bloom syndrome

An inherited disorder that causes growth defects, chromosomal instability and a predisposition to cancer. This disorder is induced by mutations in BLM, which encodes a RecQ helicase, a family of enzymes that maintain DNA integrity.

Epithelial–mesenchymal transition

The process by which epithelial cells lose cell–cell junctions and baso-apical polarity and acquire plasticity, mobility, invasive capacity, stem-like characteristics and resistance to apoptosis.

Oestrogen receptor

(ER). The intracellular receptor activated by the hormone oestrogen. Upon ligand binding, the ER can translocate into the nucleus and bind to DNA to regulate gene expression. The ER is overexpressed in 70% of breast cancers

Progesterone receptor

The intracellular receptor activated by the steroid hormone progesterone, which is often overexpressed in breast cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, L., Perna, F. et al. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer 16, 359–372 (2016). https://doi.org/10.1038/nrc.2016.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.41

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer