Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leukaemia 'firsts' in cancer research and treatment

Abstract

Our understanding of cancer biology has been radically transformed over recent years with a more realistic grasp of its multilayered cellular and genetic complexity. These advances are being translated into more selective and effective treatment of cancers and, although there are still considerable challenges, particularly with drug resistance and metastatic disease, many patients with otherwise lethal malignancies now enjoy protracted remissions or cure. One largely unheralded theme of this story is the extent to which new biological insights and novel clinical applications have their origins with leukaemia and related blood cell cancers, including lymphoma. In this Timeline article, I review the remarkable and ground-breaking role that studies in leukaemia have had at the forefront of this progress.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Milestones in leukaemia research that have paved the way for scientific and clinical cancer discoveries.
Figure 2: Clonal evolution models.
Figure 3: Development of combination chemotherapy for leukaemia.
Figure 4: Reversing differentiation arrest in leukaemias.

References

  1. Greaves, M. Cancer: The Evolutionary Legacy (Oxford Univ. Press, 2000).

    Google Scholar 

  2. Wright, N. A. Boveri at 100: cancer evolution, from preneoplasia to malignancy. J. Pathol. 234, 146–151 (2014).

    PubMed  Google Scholar 

  3. Heim, S. & Mitelman, F. Cancer Cytogenetics (Alan R. Liss, 1987).

    Google Scholar 

  4. Nowell, P. & Hungerford, D. A minute chromosome in human granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  5. Rowley, J. D. Chromosome translocations: dangerous liaisons revisited. Nat. Rev. Cancer 1, 245–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Heisterkamp, N. et al. Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature 306, 239–242 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Konopka, J. B., Watanabe, S. M. & Witte, O. N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37, 1035–1042 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA 79, 7837–7841 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cleary, M. L. & Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl Acad. Sci. USA 82, 7439–7443 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  PubMed  Google Scholar 

  14. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fialkow, P. J. The origin and development of human tumors studied with cell markers. N. Engl. J. Med. 291, 26–35 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klco, J. M. et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25, 379–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schuh, A. et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120, 4191–4196 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Egan, J. B. et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 120, 1060–1066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–4014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Potter, N. E. et al. Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res. 23, 2115–2125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Navin, N. E. Cancer genomics: one cell at a time. Genome Biol. 15, 452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Y. et al. Deep sequencing reveals clonal evolution patterns and mutation events associated with relapse in B-cell lymphomas. Genome Biol. 15, 432 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Marshall, G. M. et al. The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood 102, 2321–2333 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strong, S. J. & Corney, G. The Placenta in Twin Pregnancy (Pergamon Press, 1967).

    Google Scholar 

  47. Ma, Y. et al. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 110, 7429–7433 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cazzaniga, G. et al. Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia. Blood 118, 5559–5565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bateman, C. M. et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115, 3553–3558 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Corces-Zimmerman, M. R. & Majeti, R. Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia 28, 2276–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, X. et al. Genomic analysis of the clonal origin and evolution of acute promyelocytic leukemia in a unique patient with a very late (17 years) relapse. Leukemia 28, 1751–1754 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Ford, A. M. et al. Protracted dormancy of pre-leukaemic stem cells. Leukemia 29, 2202–2207 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Greaves, M. Does everyone develop covert cancer? Nat. Rev. Cancer 14, 209–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Martincorena, I. et al. Tumor evolution: high burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aparicio, S. & Caldas, C. The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Yap, T. A., Gerlinger, M., Futreal, P. A., Pusztai, L. & Swanton, C. Intratumor heterogeneity: seeing the wood for the trees. Sci. Transl Med. 4, 127ps10 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Pierce, G. B., Shikes, R. & Fink, L. M. Cancer: A Problem of Developmental Biology (Prentice Hall Inc., 1978).

    Google Scholar 

  66. Fialkow, P. J., Denman, A. M., Jacobson, R. J. & Lowenthal, M. N. Chronic myelocytic leukemia: origin of some lymphocytes from leukemic stem cells. J. Clin. Invest. 62, 815–823 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Sachs, L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature 274, 535–539 (1978).

    Article  CAS  PubMed  Google Scholar 

  69. Beug, H., Hayman, M. J. & Graf, T. Leukaemia as a disease of differentiation: retroviruses causing acute leukaemias in chickens. Cancer Surveys 1, 205–230 (1982).

    Google Scholar 

  70. Greaves, M. F. Differentiation-linked leukaemogenesis in lymphocytes. Science 234, 697–704 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, Y. & Parada, L. F. The molecular and genetic basis of neurological tumours. Nat. Rev. Cancer 2, 616–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alcantara Llaguno, S. R. et al. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28, 429–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greaves, M. in Nathan and Oski's Hematology and Oncology of Infancy and Childhood (eds Orkin, S. H. et al.) 1229–1238 (Elsevier Saunders, 2015).

    Google Scholar 

  76. Paugh, B. S. et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 28, 3061–3068 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Filbin, M. G. & Stiles, C. D. Of brains and blood: developmental origins of glioma diversity? Cancer Cell 28, 403–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat. Rev. Cancer 5, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gentles, A. J., Plevritis, S. K., Majeti, R. & Alizadeh, A. A. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 304, 2706–2715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Hartwell, K. A. et al. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nat. Chem. Biol. 9, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Piccirillo, S. G. M. et al. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Rep. 4, 7–15 (2015).

    Article  CAS  Google Scholar 

  88. Meyer, M. et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc. Natl Acad. Sci. USA 112, 851–856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Greaves, M. Cancer stem cells as 'units of selection'. Evol. Appl. 6, 102–108 (2013).

    Article  PubMed  Google Scholar 

  90. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Greaves, M. F. Analysis of the clinical and biological significance of lymphoid phenotypes in acute leukemia. Cancer Res. 41, 4752–4766 (1981).

    CAS  PubMed  Google Scholar 

  92. Chessells, J. M., Hardisty, R. M., Rapson, N. T. & Greaves, M. F. Acute lymphoblastic leukaemia in children: classification and prognosis. Lancet ii, 1307–1309 (1977).

  93. Sallan, S. E. et al. Cell surface antigens: prognostic implications in childhood acute lymphoblastic leukemia. Blood 55, 395–402 (1980).

    CAS  PubMed  Google Scholar 

  94. Greaves, M. F., Janossy, G., Peto, J. & Kay, H. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: their relationship to presentation features and prognosis. Br. J. Haematol. 48, 179–197 (1981).

    Article  CAS  PubMed  Google Scholar 

  95. Swerdlow, S. H. et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC, 2008).

    Google Scholar 

  96. Pui, C.-H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. N. Engl. J. Med. 350, 1535–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Armstrong, S. A. & Look, A. T. Molecular genetics of acute lymphoblastic leukemia. J. Clin. Oncol. 23, 6306–6315 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Hunger, S. P. & Mullighan, C. G. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 125, 3977–3987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Mroz, E. A. et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119, 3034–3042 (2013).

    Article  PubMed  Google Scholar 

  104. Michor, F. et al. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Pinkel, D. in White Blood: Personal Journeys with Childhood Leukaemia (ed. Greaves, M.) 13–46 (World Scientific, 2008).

    Book  Google Scholar 

  106. Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013).

    Article  PubMed  Google Scholar 

  107. Bhojwani, D. et al. ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia 26, 265–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Newlands, E. S. et al. Developments in chemotherapy for medium- and high-risk patients with gestational trophoblastic tumours (1979–1984). Br. J. Obstet. Gynaecol. 93, 63–69 (1986).

    Article  CAS  PubMed  Google Scholar 

  109. Horwich, A., Nicol, D. & Huddart, R. Testicular germ cell tumours. BMJ 347, f5526 (2013).

    Article  PubMed  Google Scholar 

  110. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6–RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 6, 5973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gutekunst, M. et al. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS ONE 6, e19198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Druker, B. J. Perspectives on the development of imatinib and the future of cancer research. Nat. Med. 15, 1149–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Corbin, A. S. et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121, 396–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, B. et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17, 427–442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Essers, M. A. & Trumpp, A. Targeting leukemic stem cells by breaking their dormancy. Mol. Oncol. 4, 443–450 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Pfeifer, H. et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 110, 727–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Lotem, J. & Sachs, L. Epigenetics wins over genetics: induction of differentiation in tumor cells. Semin. Cancer Biol. 12, 339–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de The, H. How acute promyelocytic leukaemia revived arsenic. Nat. Rev. Cancer 2, 705–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Ablain, J. et al. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 20, 167–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, X., Cruz, F. D., Terry, M., Remotti, F. & Matushansky, I. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32, 2249–2260 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Cruz, F. D. & Matushansky, I. Solid tumor differentiation therapy – is it possible? Oncotarget 3, 559–567 (2012).

    Article  PubMed  Google Scholar 

  129. Laugesen, A. & Helin, K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Sykes, S. M. et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146, 697–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Thomas, E. D. Bone marrow transplantation: a review. Semin. Hematol. 36, 95–103 (1999).

    CAS  PubMed  Google Scholar 

  132. Nivison-Smith, I. et al. Relative survival of long-term hematopoietic cell transplant recipients approaches general population rates. Biol. Blood Marrow Transplant. 15, 1323–1330 (2009).

    Article  PubMed  Google Scholar 

  133. Jenq, R. R. & van den Brink, M. R. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat. Rev. Cancer 10, 213–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Pietras, W. Advances and changes in the treatment of children with nephroblastoma. Adv. Clin. Exp. Med. 21, 809–820 (2012).

    PubMed  Google Scholar 

  136. Necchi, A. et al. High-dose chemotherapy for germ cell tumors: do we have a model? Expert Opin. Biol. Ther. 15, 33–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Sureda, A. et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 50, 1037–1056 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Demirer, T. et al. Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat. Clin. Pract. Oncol. 5, 256–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Bachireddy, P., Burkhardt, U. E., Rajasagi, M. & Wu, C. J. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat. Rev. Cancer 15, 201–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Larson, S. M., Carrasquillo, J. A., Cheung, N. K. & Press, O. W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Weiner, G. J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15, 361–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Miller, J. F. & Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 27, 439–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Reiss, K. A., Forde, P. M. & Brahmer, J. R. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy. Immunotherapy 6, 459–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Rizvi, N. A. et al. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Szczepanski, T., Orfao, A., van der Velden, V. H., San Miguel, J. F. & van Dongen, J. J. Minimal residual disease in leukaemia patients. Lancet Oncol. 2, 409–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. van Dongen, J. J. M. et al. Prognostic value of minimal residual disease in childhood acute lymphoblastic leukemia. Lancet 352, 1731–1738 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. van Dongen, J. J., van der Velden, V. H., Bruggemann, M. & Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood 125, 3996–4009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hourigan, C. S. & Karp, J. E. Minimal residual disease in acute myeloid leukaemia. Nat. Rev. Clin. Oncol. 10, 460–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    Article  PubMed  Google Scholar 

  156. Franceschi, S. & Herrero, R. in IARC World Cancer Report 2014 (eds Stewart, B. W. & Wild, C. P.) 105–114 (IARC, 2014).

    Google Scholar 

  157. Zur Hausen, H. Infections Causing Human Cancer (Wiley-VCH, 2006).

    Book  Google Scholar 

  158. Cohen, J. I., Fauci, A. S., Varmus, H. & Nabel, G. J. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci. Transl Med. 3, 107fs7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10, 878–889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ellermann, V. & Bang, O. Experimentelle Leukämie bei Hühnern. Zentralbl. Bakteriol. 46, 595 (1908).

    Google Scholar 

  161. Rous, P. A sarcoma of the fowl transmissible by agent separable from tumor cells. J. Exp. Med. 13, 397–411 (1911).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gross, L. Oncogenic Viruses (Pergamon Press, 1983).

    Google Scholar 

  163. Jarrett, W. F., Crawford, E. M., Martin, W. B. & Davie, F. A. Virus-like particle associated with leukemia (lymphosarcoma). Nature 202, 567–569 (1964).

    Article  CAS  PubMed  Google Scholar 

  164. Hardy, W. D. et al. Horizontal transmission of feline leukaemia virus. Nature 244, 266–269 (1973).

    Article  PubMed  Google Scholar 

  165. Burny, A. et al. Bovine leukemia virus involvement in enzootic bovine leukosis. Adv. Cancer Res. 28, 251–311 (1978).

    Article  CAS  PubMed  Google Scholar 

  166. Jarrett, W. et al. Vaccination against feline leukaemia virus using a cell membrane antigen system. Int. J. Cancer 16, 134–141 (1975).

    Article  CAS  PubMed  Google Scholar 

  167. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet i, 702–703 (1964).

    Article  Google Scholar 

  168. Gallo, R. C., Essex, M. E. & Gross, L. (eds) Human T-cell Leukemia/Lymphoma Virus: The Family of Human T-Lymphotropic Retroviruses: Their Role in Malignancies and Association with AIDS (Cold Spring Harbor Laboratory Press, 1984).

    Google Scholar 

  169. Matsuoka, M. & Jeang, K. T. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer 7, 270–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Isaacson, P. G. & Du, M.-Q. MALT lymphoma: from morphology to molecules. Nat. Rev. Cancer 4, 644–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Peek, R. M. Jr & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Cuzick, J. et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 10, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Kostadinov, R. L. et al. NSAIDs modulate clonal evolution in Barrett's esophagus. PLoS Genet. 9, e1003553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Stewart, B. W. & Wild, C. P. (eds) World Cancer Report 2014 (IARC, 2014).

    Google Scholar 

  178. Medawar, P. B. The Art of the Soluble (Methuen & Co. Ltd, 1967).

    Google Scholar 

  179. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Wang, J. C. Y. & Dick, J. E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Metcalf, D. Hematopoietic cytokines. Blood 111, 485–491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wyke, J. & Weiss, R. (eds) Cancer Surveys: Viruses in Human and Animal Cancers (Oxford Univ. Press, 1984).

    Google Scholar 

  183. Herzenberg, L. A. et al. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827 (2002).

    CAS  PubMed  Google Scholar 

  184. Piller, G. Rays of Hope – The Story of the Leukaemia Research Fund (Leukaemia Research Fund, 1994).

    Google Scholar 

  185. Luch, A. Nature and nurture – lessons from chemical carcinogenesis. Nat. Rev. Cancer 5, 113–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Tabin, C. J. et al. Mechanism of activation of a human oncogene. Nature 300, 143–149 (1982).

    Article  CAS  PubMed  Google Scholar 

  187. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  PubMed  Google Scholar 

  188. Zetter, B. R. The scientific contributions of M. Judah Folkman to cancer research. Nat. Rev. Cancer 8, 647–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fletcher, O. & Houlston, R. S. Architecture of inherited susceptibility to common cancer. Nat. Rev. Cancer 10, 353–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Lenoir, G. M., O'Conor, G. T. & Olweny, C. L. M. (eds) Burkitt's Lymphoma: A Human Cancer Model (WHO/IARC, 1985).

    Google Scholar 

  192. Burkitt, D. P. in Burkitt's Lymphoma: A Human Cancer Model (eds Lenoir, G. M., O'Conor, G. T. & Olwany, C. L. M.) 11–15 (IARC, 1985).

    Google Scholar 

  193. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nat. Rev. Cancer 2, 373–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Laszlo, J. The Cure of Childhood Leukaemia (Rutgers Univ. Press, 1995).

    Google Scholar 

Download references

Acknowledgements

M.G. is supported by Leukaemia & Lymphoma Research (now Bloodwise), the Wellcome Trust [105104/Z/14/Z] and The Institute of Cancer Research. The author is very grateful to Professor T. Andrew Lister, a friend and colleague who helped to introduce him to clinical leukaemia many years ago and has provided constructive suggestions on this article. This historical Timeline article covers a time frame of many decades and an extensive field of biomedical research and clinical endeavour. The author apologizes for the inevitable omissions; it's a complex narrative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Greaves.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greaves, M. Leukaemia 'firsts' in cancer research and treatment. Nat Rev Cancer 16, 163–172 (2016). https://doi.org/10.1038/nrc.2016.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer