Defining actionable mutations for oncology therapeutic development

Abstract

Genomic profiling of tumours in patients in clinical trials enables rapid testing of multiple hypotheses to confirm which genomic events determine likely responder groups for targeted agents. A key challenge of this new capability is defining which specific genomic events should be classified as 'actionable' (that is, potentially responsive to a targeted therapy), especially when looking for early indications of patient subgroups likely to be responsive to new drugs. This Opinion article discusses some of the different approaches being taken in early clinical development to define actionable mutations, and describes our strategy to address this challenge in early-stage exploratory clinical trials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Lollipop plot showing the distribution and classes of mutations in TP53 across pan-cancer datasets in The Cancer Genome Atlas.

References

  1. 1

    Gridelli, C. et al. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 1, 15009 (2015).

    Article  Google Scholar 

  2. 2

    Simon, R. & Roychowdhury, S. Implementing personalized cancer genomics in clinical trials. Nat. Rev. Drug Discov. 12, 358–369 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Herbst, R. S. et al. Lung master protocol (Lung-MAP)—a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin. Cancer Res. 21, 1514–1524 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Sleijfer, S., Bogaerts, J. & Siu, L. L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841 (2013).

    Article  Google Scholar 

  5. 5

    Andre, F. et al. Prioritizing targets for precision cancer medicine. Ann. Oncol. 25, 2295–2303 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Hollingsworth, S. Precision medicine in oncology drug development – a pharma perspective. Drug Discov. Today 20, 1455–1463 (2015).

    Article  Google Scholar 

  7. 7

    Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Chau, N. G. & Lorch, J. H. Exceptional responders inspire change: lessons for drug development from the bedside to the bench and back. Oncologist 20, 699–701 (2015).

    Article  Google Scholar 

  9. 9

    Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Ulahannan, D., Kovac, M. B., Mulholland, P. J., Cazier, J. B. & Tomlinson, I. Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br. J. Cancer 109, 827–835 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    CAS  Article  Google Scholar 

  14. 14

    US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01888601 (2015).

  15. 15

    Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Dougherty, B. et al. Exploratory analyses suggest ovarian tumors with somatic or germline loss of function mutations in BRCA1 or BRCA2 are biologically similar and sensitive to PARP inhibition. Cancer Res. 75, 611 (abstract 611) (2015).

    Google Scholar 

  18. 18

    Jones, S. et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci. Transl Med. 7, 283ra53 (2015).

    Article  Google Scholar 

  19. 19

    Rodon, J. et al. Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial. Ann. Oncol. 26, 1791–1798 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Kong-Beltran, M. et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 66, 283–289 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Onozato, R. et al. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J. Thorac. Oncol. 4, 5–11 (2009).

    Article  Google Scholar 

  25. 25

    Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  Google Scholar 

  27. 27

    Szabo, C., Masiello, A., Ryan, J. F. & Brody, L. C. The breast cancer information core: database design, structure, and scope. Hum. Mutat. 16, 123–131 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Baralle, D. & Baralle, M. Splicing in action: assessing disease causing sequence changes. J. Med. Genet. 42, 737–748 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Plon, S. E. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

  34. 34

    International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  35. 35

    Janne, P. A. et al. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer. Br. J. Cancer 113, 199–203 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Skoulidis, F. et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 5, 860–877 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Chibon, F. Cancer gene expression signatures – the rise and fall? Eur. J. Cancer 49, 2000–2009 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Rehm, H. L. et al. ClinGen—the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Martelotto, L. G. et al. Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations. Genome Biol. 15, 484 (2014).

    Article  Google Scholar 

  41. 41

    Miosge, L. A. et al. Comparison of predicted and actual consequences of missense mutations. Proc. Natl Acad. Sci. USA 112, E5189–5198 (2015).

    CAS  Article  Google Scholar 

  42. 42

    1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  43. 43

    Pennington, K. P. et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 20, 764–775 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Richards, C. S. et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet. Med. 10, 294–300 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  Google Scholar 

  46. 46

    Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).

    CAS  Article  Google Scholar 

  48. 48

    Pritchard, C. C. et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J. Mol. Diagn. 16, 56–67 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    CAS  Article  Google Scholar 

  50. 50

    Meric-Bernstam, F. et al. A decision support framework for genomically informed investigational cancer therapy. J. Natl. Cancer Inst. 107, djv098 (2015).

    Article  Google Scholar 

  51. 51

    Hovelson, D. H. et al. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 17, 385–399 (2015).

    CAS  Article  Google Scholar 

  52. 52

    McNeil, C. NCI-MATCH launch highlights new trial design in precision-medicine era. J. Natl. Cancer Inst. 107, djv193 (2015).

    Article  Google Scholar 

  53. 53

    NCI-Molecular Analysis for Therapy Choice (NCI-MATCH) trial. NIH National Cancer Institute [online], (2015).

  54. 54

    Sukhai, M. A. et al. A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet. Med. 18, 128–136 (2016).

    CAS  Article  Google Scholar 

  55. 55

    US Food and Drug Administration. FDA approves Lynparza to treat advanced ovarian cancer. FDA [online], (2014).

  56. 56

    Middleton, G. et al. The UK National Lung Matrix Trial: translating the biology of stratification in advanced non-small cell lung cancer. Ann. Oncol. 26, 2464–2469 (2015).

    CAS  Article  Google Scholar 

  57. 57

    American Association for Cancer Research (AACR). Project GENIE. http://www.aacr.org/genie (2015).

  58. 58

    NCI and the precision medicine initiative. NIH National Cancer Institute [online], (2015).

  59. 59

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02087176 (2015).

  60. 60

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02087241 (2015).

  61. 61

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01357161 (2015).

  62. 62

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  Google Scholar 

  63. 63

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer. Discov. 2, 401–404 (2012).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to T. Hedley Carr or Robert McEwen.

Ethics declarations

Competing interests

The authors are employees of AstraZeneca and hold shares in the company.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carr, T., McEwen, R., Dougherty, B. et al. Defining actionable mutations for oncology therapeutic development. Nat Rev Cancer 16, 319–329 (2016). https://doi.org/10.1038/nrc.2016.35

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing