Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sexual dimorphism in cancer

Abstract

The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major cancer types, in organs unrelated to reproductive function, with gender differences in incidence and mortality.
Figure 2: Role of sex steroid hormone receptors in non-reproductive tissues.
Figure 3: Possible mechanisms contributing to gender dimorphism in hepatocellular carcinoma.
Figure 4: Interplay between sex chromosomes in human cancer.
Figure 5: Hormonal and chromosomal contributions to sexual dimorphism in cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    PubMed  Google Scholar 

  2. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    PubMed  Google Scholar 

  3. Rahbari, R., Zhang, L. & Kebebew, E. Thyroid cancer gender disparity. Future Oncol. 6, 1771–1779 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. OuYang, P. Y. et al. The significant survival advantage of female sex in nasopharyngeal carcinoma: a propensity-matched analysis. Br. J. Cancer 112, 1554–1561 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wisnivesky, J. P. & Halm, E. A. Sex differences in lung cancer survival: do tumors behave differently in elderly women? J. Clin. Oncol. 25, 1705–1712 (2007).

    Article  PubMed  Google Scholar 

  7. Dorak, M. T. & Karpuzoglu, E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front. Genet. 3, 268 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, Y. et al. Effect of luteinizing hormone-induced prohibitin and matrix metalloproteinases on ovarian epithelial tumor cell proliferation. Am. J. Cancer Res. 5, 114–124 (2015).

    CAS  PubMed  Google Scholar 

  9. Mertens-Walker, I., Baxter, R. C. & Marsh, D. J. Gonadotropin signalling in epithelial ovarian cancer. Cancer Lett. 324, 152–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Jacobson, E. M., Hugo, E. R., Borcherding, D. C. & Ben-Jonathan, N. Prolactin in breast and prostate cancer: molecular and genetic perspectives. Discov. Med. 11, 315–324 (2011).

    PubMed  Google Scholar 

  11. Hartwell, H. J., Petrosky, K. Y., Fox, J. G., Horseman, N. D. & Rogers, A. B. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc. Natl Acad. Sci. USA 111, 11455–11460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamamoto, R. et al. Correlation between serum prolactin levels and hepatocellular tumorigenesis induced by 3′-methyl-4-dimethylaminoazobenzene in mice. Br. J. Cancer 72, 17–21 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mueller, K. M. et al. Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology 54, 1398–1409 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Gabory, A., Attig, L. & Junien, C. Sexual dimorphism in environmental epigenetic programming. Mol. Cell Endocrinol. 304, 8–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Lea, R. W., Dawson, T., Martinez-Moreno, C. G., El-Abry, N. & Harvey, S. Growth hormone and cancer: GH production and action in glioma? Gen. Comp. Endocrinol. 220, 119–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto, T. et al. The androgen receptor in health and disease. Annu. Rev. Physiol. 75, 201–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Nugent, B. M. et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18, 690–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melé, M. et al. Human genomics. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brooks, Y. S. et al. Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. J. Clin. Invest. 124, 2260–2276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugathan, A. & Waxman, D. J. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol. Cell. Biol. 33, 3594–3610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brisken, C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat. Rev. Cancer 13, 385–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Skjefstad, K. et al. The prognostic role of progesterone receptor expression in non-small cell lung cancer patients: gender-related impacts and correlation with disease-specific survival. Steroids 98, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Simon, M. S. et al. Estrogen plus progestin and colorectal cancer incidence and mortality. J. Clin. Oncol. 30, 3983–3990 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patrone, C. et al. Regulation of postnatal lung development and homeostasis by estrogen receptor β. Mol. Cell. Biol. 23, 8542–8552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wada-Hiraike, O. et al. Role of estrogen receptor β in colonic epithelium. Proc. Natl Acad. Sci. USA 103, 2959–2964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campbell, L. et al. Estrogen promotes cutaneous wound healing via estrogen receptor β independent of its antiinflammatory activities. J. Exp. Med. 207, 1825–1833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashcroft, G. S. & Mills, S. J. Androgen receptor-mediated inhibition of cutaneous wound healing. J. Clin. Invest. 110, 615–624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai, J. J. et al. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-α expression. J. Clin. Invest. 119, 3739–3751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, H. J., Heo, J. S. & Lee, Y. J. Estradiol-17β stimulates proliferation of mouse embryonic stem cells: involvement of MAPKs and CDKs as well as protooncogenes. Am. J. Physiol. Cell Physiol. 290, C1067–C1075 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Strehlow, K. et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 107, 3059–3065 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Masuda, H. et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ. Res. 101, 598–606 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Nakada, D. et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505, 555–558 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pawluski, J. L., Brummelte, S., Barha, C. K., Crozier, T. M. & Galea, L. A. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front. Neuroendocrinol. 30, 343–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Bayne, S. et al. Estrogen deficiency leads to telomerase inhibition, telomere shortening and reduced cell proliferation in the adrenal gland of mice. Cell Res. 18, 1141–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Kato, K. et al. Contribution of estrogen receptor α to oncogenic K-Ras-mediated NIH3T3 cell transformation and its implication for escape from senescence by modulating the p53 pathway. J. Biol. Chem. 277, 11217–11224 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Bain, J. Andropause. Testosterone replacement therapy for aging men. Can. Fam. Physician 47, 91–97 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dokal, I. & Vulliamy, T. Dyskeratosis congenita: its link to telomerase and aplastic anaemia. Blood Rev. 17, 217–225 (2003).

    Article  PubMed  Google Scholar 

  39. Calado, R. T. & Young, N. S. Telomere maintenance and human bone marrow failure. Blood 111, 4446–4455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calado, R. T. et al. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114, 2236–2243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fillmore, C. M. et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc. Natl Acad. Sci. USA 107, 21737–21742 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y., Eades, G., Yao, Y., Li, Q. & Zhou, Q. Estrogen receptor α signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2. J. Biol. Chem. 287, 41514–41522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schroeder, A. et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 74, 1227–1237 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, C. K., Luo, J., Lee, S. O. & Chang, C. Concise review: androgen receptor differential roles in stem/progenitor cells including prostate, embryonic, stromal, and hematopoietic lineages. Stem Cells 32, 2299–2308 (2014).

    Article  PubMed  Google Scholar 

  45. Shim, G. J. et al. Disruption of the estrogen receptor β gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis. Proc. Natl Acad. Sci. USA 100, 6694–6699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jorgensen, H. G. & Holyoake, T. L. A comparison of normal and leukemic stem cell biology in chronic myeloid leukemia. Hematol. Oncol. 19, 89–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Berger, U. et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia 19, 984–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ohlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503–1523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slavin, S. et al. Estrogen receptor α in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. Carcinogenesis 35, 1301–1309 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Lai, K. P., Yamashita, S., Huang, C. K., Yeh, S. & Chang, C. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol. Med. 4, 791–807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leach, D. A. et al. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget 6, 16135–16150 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Gupta, P. B. et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 67, 2062–2071 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Pequeux, C. et al. Stromal estrogen receptor-α promotes tumor growth by normalizing an increased angiogenesis. Cancer Res. 72, 3010–3019 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. den Boon, J. A. et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. Proc. Natl Acad. Sci. USA 112, E3255–E3264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ellem, S. J. & Risbridger, G. P. Treating prostate cancer: a rationale for targeting local oestrogens. Nat. Rev. Cancer 7, 621–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. McPherson, S. J. et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl Acad. Sci. USA 107, 3123–3128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamada, H. et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 114, 2261–2270 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Seo, K. H. et al. Estrogen enhances angiogenesis through a pathway involving platelet-activating factor-mediated nuclear factor-κB activation. Cancer Res. 64, 6482–6488 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Stoner, M. et al. Estrogen regulation of vascular endothelial growth factor gene expression in ZR-75 breast cancer cells through interaction of estrogen receptor α and SP proteins. Oncogene 23, 1052–1063 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hartman, J. et al. Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res. 66, 11207–11213 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Sieveking, D. P. et al. A sex-specific role for androgens in angiogenesis. J. Exp. Med. 207, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoshida, S. et al. Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial growth factor receptor signaling. Circulation 128, 60–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cai, J. et al. Androgen stimulates endothelial cell proliferation via an androgen receptor/VEGF/cyclin A-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol. 300, H1210–H1221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dotto, G. P. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J. Clin. Invest. 124, 1446–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Campbell, L. et al. Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair. J. Invest. Dermatol. 134, 2447–2457 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Yang, W. et al. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). J. Biol. Chem. 287, 40140–40149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang, L. Y. et al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4–STAT3 signaling. Cancer Res. 73, 5633–5646 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lai, J. J. et al. Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. Am. J. Pathol. 181, 1504–1512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Templeton, A. J. et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl Cancer Inst. 106, dju124 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. von Boehmer, H. & Daniel, C. Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nat. Rev. Drug Discov. 12, 51–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Nie, J., Li, Y. Y., Zheng, S. G., Tsun, A. & Li, B. FOXP3+ Treg cells and gender bias in autoimmune diseases. Front. Immunol. 6, 493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Polanczyk, M. J. et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173, 2227–2230 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sloan, J. A. et al. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J. Clin. Oncol. 20, 1491–1498 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Singh, S. et al. Influence of sex on toxicity and treatment outcome in small-cell lung cancer. J. Clin. Oncol. 23, 850–856 (2005).

    Article  PubMed  Google Scholar 

  85. Bianchi, I., Lleo, A., Gershwin, M. E. & Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 38, J187–J192 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Dai, R. & Ahmed, S. A. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Ther. Clin. Risk Manag. 10, 151–163 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hewagama, A. et al. Overexpression of X-linked genes in T cells from women with lupus. J. Autoimmun. 41, 60–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barros, R. P. & Gustafsson, J. A. Estrogen receptors and the metabolic network. Cell Metab. 14, 289–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Mauvais-Jarvis, F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 22, 24–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    CAS  PubMed  Google Scholar 

  91. Tisdale, M. J. Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Baracos, V. E., Reiman, T., Mourtzakis, M., Gioulbasanis, I. & Antoun, S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am. J. Clin. Nutr. 91, 1133S–1137S (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Cosper, P. F. & Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71, 1710–1720 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. von Haehling, S., Morley, J. E. & Anker, S. D. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle 1, 129–133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vigano, A. et al. Male hypogonadism associated with advanced cancer: a systematic review. Lancet Oncol. 11, 679–684 (2010).

    Article  PubMed  Google Scholar 

  96. Basaria, S. Male hypogonadism. Lancet 383, 1250–1263 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Dobs, A. S. et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled Phase 2 trial. Lancet Oncol. 14, 335–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, Z., Tuteja, G., Schug, J. & Kaestner, K. H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148, 72–83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Li, Z. et al. Foxa1 and Foxa2 regulate bile duct development in mice. J. Clin. Invest. 119, 1537–1545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matic, M. et al. Estrogen signalling and the metabolic syndrome: targeting the hepatic estrogen receptor alpha action. PLoS ONE 8, e57458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamamoto, R., Tatsuta, M. & Terada, N. Suppression by oestrogen of hepatocellular tumourigenesis induced in mice by 3′-methyl-4-dimethylaminoazobenzene. Br. J. Cancer 68, 303–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Porsch Hallstrom, I., Svensson, D. & Blanck, A. Sex-differentiated deoxycholic acid promotion of rat liver carcinogenesis is under pituitary control. Carcinogenesis 12, 2035–2040 (1991).

    Article  CAS  PubMed  Google Scholar 

  104. Kerrigan, J. R. & Rogol, A. D. The impact of gonadal steroid hormone action on growth hormone secretion during childhood and adolescence. Endocr. Rev. 13, 281–298 (1992).

    CAS  PubMed  Google Scholar 

  105. Mode, A. & Gustafsson, J. A. Sex and the liver — a journey through five decades. Drug Metab. Rev. 38, 197–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Herrington, J., Smit, L. S., Schwartz, J. & Carter-Su, C. The role of STAT proteins in growth hormone signaling. Oncogene 19, 2585–2597 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Di Bisceglie, A. M. Hepatitis B and hepatocellular carcinoma. Hepatology 49, S56–S60 (2009).

    Article  PubMed  Google Scholar 

  108. Yu, C. P. et al. Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-beta activation. PLoS ONE 8, e56667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Passarelli, M. N. et al. Common single-nucleotide polymorphisms in the estrogen receptor β promoter are associated with colorectal cancer survival in postmenopausal women. Cancer Res. 73, 767–775 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Press, O. A. et al. Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer. Cancer Res. 68, 3037–3042 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Schmidt, A. N., Nanney, L. B., Boyd, A. S., King, L. E. Jr & Ellis, D. L. Oestrogen receptor-β expression in melanocytic lesions. Exp. Dermatol. 15, 971–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Matsuoka, H. et al. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways. Exp. Cell Res. 315, 2022–2032 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Hartman, J. et al. Tumor repressive functions of estrogen receptor β in SW480 colon cancer cells. Cancer Res. 69, 6100–6106 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Sareddy, G. R. et al. Therapeutic significance of estrogen receptor β agonists in gliomas. Mol. Cancer Ther. 11, 1174–1182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pinton, G. et al. Estrogen receptor-β affects the prognosis of human malignant mesothelioma. Cancer Res. 69, 4598–4604 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Yakimchuk, K. et al. Effect of ligand-activated estrogen receptor β on lymphoma growth in vitro and in vivo. Leukemia 25, 1103–1110 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Stanley, J. A. et al. Androgen receptor expression in human thyroid cancer tissues: a potential mechanism underlying the gender bias in the incidence of thyroid cancers. J. Steroid Biochem. Mol. Biol. 130, 105–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Lee, M. L. et al. Induction of thyroid papillary carcinoma cell proliferation by estrogen is associated with an altered expression of Bcl-xL. Cancer J. 11, 113–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Sarma, K. et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159, 869–883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Article  CAS  Google Scholar 

  121. Migeon, B. R. The role of X inactivation and cellular mosaicism in women's health and sex-specific diseases. JAMA 295, 1428–1433 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Kawakami, T. et al. Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 23, 6163–6169 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Benoit, M. H. et al. Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines. Int. J. Oncol. 30, 5–17 (2007).

    PubMed  Google Scholar 

  124. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Yao, Y. et al. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett. 359, 75–86 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Kawakami, T. et al. The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J. Urol. 169, 1546–1552 (2003).

    Article  PubMed  Google Scholar 

  127. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walport, L. J. et al. Human UTY(KDM6C) is a male-specific N-methyl lysyl demethylase. J. Biol. Chem. 289, 18302–18313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mar, B. G. et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia 26, 1881–1883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van der Meulen, J. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125, 13–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Northcott, P. A. et al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang, L. et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 47, 1061–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, D. W. et al. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 33, 1515–1526 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Huff, V. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat. Rev. Cancer 11, 111–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rondinelli, B. et al. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J. Clin. Invest. 125, 4625–4637 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Karanikas, V. et al. Foxp3 expression in human cancer cells. J. Transl. Med. 6, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hinz, S. et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 67, 8344–8350 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, R. et al. FOXP3 controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75, 1703–1713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, R. et al. FOXP3-miR-146-NF-κB axis and therapy for precancerous lesions in prostate. Cancer Res. 75, 1714–1724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. le Sage, C. et al. Regulation of the p27 (Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699–3708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, X. et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 9, 824–833 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Hui, A. B. et al. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clin. Cancer Res. 19, 2154–2162 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Singhal, R., Bard, J. E., Nowak, N. J., Buck, M. J. & Kandel, E. S. FOXO1 regulates expression of a microRNA cluster on X chromosome. Aging (Albany NY) 5, 347–356 (2013).

    Article  CAS  Google Scholar 

  150. Nadal, M. et al. Aneuploidy of chromosome Y in prostate tumors and seminal vesicles: a possible sign of aging rather than an indicator of carcinogenesis? Mol. Carcinog. 46, 543–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Konig, J. J., Teubel, W., Romijn, J. C., Schroder, F. H. & Hagemeijer, A. Gain and loss of chromosomes 1, 7, 8, 10, 18, and Y in 46 prostate cancers. Hum. Pathol. 27, 720–727 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Stahl, P. R. et al. Y chromosome losses are exceedingly rare in prostate cancer and unrelated to patient age. Prostate 72, 898–903 (2012).

    Article  PubMed  Google Scholar 

  153. Kowalski, J. et al. Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Cancer Genet. Cytogenet. 178, 26–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Bottarelli, L. et al. Sex chromosome alterations associate with tumor progression in sporadic colorectal carcinomas. Clin. Cancer Res. 13, 4365–4370 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Fadl-Elmula, I. et al. Karyotypic characterization of urinary bladder transitional cell carcinomas. Genes Chromosomes Cancer 29, 256–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Mitelman, F., Johansson, B. & Mertens, F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. Cancer Gene Anatomy Project (online), (2016).

  157. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dumanski, J. P. et al. Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. Science 347, 81–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Bianchi, N. O. Y chromosome structural and functional changes in human malignant diseases. Mutat. Res. 682, 21–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Kido, T. & Lau, Y. F. Roles of the Y chromosome genes in human cancers. Asian J. Androl. 17, 373–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Murakami, S. et al. SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets. Stem Cells 33, 2652–2663 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Murakami, S. et al. The male-specific factor Sry harbors an oncogenic function. Oncogene 33, 2978–2986 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Collignon, J. et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509–520 (1996).

    CAS  PubMed  Google Scholar 

  164. Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511, 246–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yuan, X., Lu, M. L., Li, T. & Balk, S. P. SRY interacts with and negatively regulates androgen receptor transcriptional activity. J. Biol. Chem. 276, 46647–46654 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Lau, Y. F., Li, Y. & Kido, T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. Birth Defects Res. C Embryo Today 87, 114–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Kido, T., Hatakeyama, S., Ohyama, C. & Lau, Y. F. Expression of the Y-encoded TSPY is associated with progression of prostate cancer. Genes (Basel) 1, 283–293 (2010).

    Article  CAS  Google Scholar 

  168. Kido, T. et al. The potential contributions of a Y-located protooncogene and its X homologue in sexual dimorphisms in hepatocellular carcinoma. Hum. Pathol. 45, 1847–1858 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Delbridge, M. L. et al. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X - implications for Y chromosome evolution. Chromosome Res. 12, 345–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Kido, T., Ou, J. H. & Lau, Y. F. The X-linked tumor suppressor TSPX interacts and promotes degradation of the hepatitis B viral protein HBx via the proteasome pathway. PLoS ONE 6, e22979 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, S. et al. Over-expressed testis-specific protein Y-encoded 1 as a novel biomarker for male hepatocellular carcinoma. PLoS ONE 9, e89219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lau, Y. F. & Zhang, J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. 27, 308–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Tsuei, D. J. et al. RBMY, a male germ cell-specific RNA-binding protein, activated in human liver cancers and transforms rodent fibroblasts. Oncogene 23, 5815–5822 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Tsuei, D. J. et al. Male germ cell-specific RNA binding protein RBMY: a new oncogene explaining male predominance in liver cancer. PLoS ONE 6, e26948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Potter, J. D. Morphogens, morphostats, microarchitecture and malignancy. Nat. Rev. Cancer 7, 464–474 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cardiff, R. D. & Borowsky, A. D. Precancer: sequentially acquired or predetermined? Toxicol. Pathol. 38, 171–179 (2010).

    Article  PubMed  Google Scholar 

  180. Gatenby, R. Perspective: finding cancer's first principles. Nature 491, S55 (2012).

    Article  PubMed  Google Scholar 

  181. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Scoggins, C. R. et al. Gender-related differences in outcome for melanoma patients. Ann. Surg. 243, 693–698; discussion 698–700 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Austad, S. N. Why women live longer than men: sex differences in longevity. Gend. Med. 3, 79–92 (2006).

    Article  PubMed  Google Scholar 

  185. Thornton, M. J. Estrogens and aging skin. Dermatoendocrinol. 5, 264–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Paterni, I., Granchi, C., Katzenellenbogen, J. A. & Minutolo, F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 90, 13–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Taplin, M. E. Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat. Clin. Pract. Oncol. 4, 236–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Ahuja, N., Sharma, A. R. & Baylin, S. B. Epigenetic therapeutics: a new weapon in the war against cancer. Annu. Rev. Med. 67, 73–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Swiss National Science Foundation (310030_156191/1), US National Institutes of Health (NIH; R01AR039190; R01AR064786; the content not necessarily representing the official views of NIH), European Research Council (26075083) and OncoSuisse (OCS-2922-02-2012). A.C. is supported by an AIRC-EU FP7 Marie Curie Fellowship granted by the Italian Association for Cancer Research and the European Union FP7 Marie Curie Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paolo Dotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

41568_2016_BFnrc201630_MOESM212_ESM.pdf

Supplementary information S1 (table) | Representative list of X-linked microRNAs and protein coding genes associated with cancer development (PDF 775 kb)

Supplementary information S2 (table) | Supplementary information (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clocchiatti, A., Cora, E., Zhang, Y. et al. Sexual dimorphism in cancer. Nat Rev Cancer 16, 330–339 (2016). https://doi.org/10.1038/nrc.2016.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.30

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer