Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping

Abstract

Many cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen–deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes. HDXMS measures changes in solvent accessibility and hydrogen bonding upon complex formation; a decrease in HDX rate could account for newly formed intermolecular or intramolecular interactions. To distinguish between inter- and intramolecular interactions, we use a CXMS method to determine the position of direct interface regions by trapping intermolecular residues in close proximity to various cross-linkers (e.g., disuccinimidyl adipate (DSA)) of different lengths and reactive groups. Both MS-based experiments are performed on high-resolution mass spectrometers (e.g., an Orbitrap Elite hybrid mass spectrometer). The physiological relevance of the interactions identified through HDXMS and CXMS is investigated by transiently co-expressing cysteine mutant pairs, one mutant on each protein at the discovered interfaces, in an appropriate cell line, such as HEK293. Disulfide-trapped protein complexes are formed within cells spontaneously or are facilitated by addition of oxidation reagents such as H2O2 or diamide. Western blotting analysis, in the presence and absence of reducing reagents, is used to determine whether the disulfide bonds are formed in the proposed complex interface in physiologically relevant milieus. The procedure described here requires 1–2 months. We demonstrate this approach using the β2-adrenergic receptor-β-arrestin1 complex as the model system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the orthogonal approach combining HDXMS, CXMS, and disulfide trapping.
Figure 2: Workflow for HDXMS, CXMS, and disulfide-trapping experiments.
Figure 3: Different types of cross-linkers with their reactive groups and lengths of spacer arms.
Figure 4: Fragmentation tuning in HDXMS experiments.
Figure 5: Sample preparation for time-dependent on-exchange HDXMS experiments.
Figure 6: Mapping the interaction interface between β2AR and β-arrestin 1 by HDXMS.
Figure 7: Mapping the interaction interface between β2AR and β-arrestin 1 by CXMS.
Figure 8: Mapping the interaction interface between β2AR and β-arrestin 1 by disulfide trapping.
Figure 9: Revealing the architecture of the β2-adrenergic receptor (β2AR)-βarrestin 1 complex via an orthogonal approach combining HDXMS, CXMS, and disulfide trapping.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    CAS  PubMed  Google Scholar 

  2. Rasmussen, S.G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng, H. et al. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Expert Opin. Drug Discov. 10, 975–989 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Zhang, H. & Cramer, W.A. Problems in obtaining diffraction-quality crystals of hetero-oligomeric integral membrane proteins. J. Struct. Funct. Genomics 6, 219–223 (2005).

    CAS  PubMed  Google Scholar 

  5. Slabinski, L. et al. The challenge of protein structure determination—lessons from structural genomics. Protein Sci. 16, 2472–2482 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 280, 5705–5736 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao, K., Chung, J. & Wall, A. The power of mass spectrometry in structural characterization of GPCR signaling. J. Recept. Signal Transduct. Res. 35, 213–219 (2015).

    CAS  PubMed  Google Scholar 

  8. Kobilka, B. & Schertler, G.F. New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 29, 79–83 (2008).

    CAS  PubMed  Google Scholar 

  9. Karplus, M. & Petsko, G.A. Molecular dynamics simulations in biology. Nature 347, 631–639 (1990).

    CAS  PubMed  Google Scholar 

  10. Sattler, M. & Fesik, S.W. Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4, 1245–1249 (1996).

    CAS  PubMed  Google Scholar 

  11. Wuthrich, K. The way to NMR structures of proteins. Nat. Struct. Biol. 8, 923–925 (2001).

    CAS  PubMed  Google Scholar 

  12. Simon, B., Madl, T., Mackereth, C.D., Nilges, M. & Sattler, M. An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Angew. Chem. Int. Ed. Engl. 49, 1967–1970 (2010).

    CAS  PubMed  Google Scholar 

  13. Wuthrich, K. Protein structure determination in solution by NMR spectroscopy. J. Biol. Chem. 265, 22059–22062 (1990).

    CAS  PubMed  Google Scholar 

  14. Montalvao, R.W., Cavalli, A., Salvatella, X., Blundell, T.L. & Vendruscolo, M. Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex. J. Am. Chem. Soc. 130, 15990–15996 (2008).

    CAS  PubMed  Google Scholar 

  15. Jaroniec, C.P. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes. Solid State Nucl. Magn. Reson. 43–44, 1–13 (2012).

    PubMed  Google Scholar 

  16. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    CAS  PubMed  Google Scholar 

  18. Kasas, S., Dumas, G., Dietler, G., Catsicas, S. & Adrian, M. Vitrification of cryoelectron microscopy specimens revealed by high-speed photographic imaging. J. Microsc. 211, 48–53 (2003).

    CAS  PubMed  Google Scholar 

  19. Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

    PubMed  Google Scholar 

  20. Kaufmann, R., Muller, P., Hildenbrand, G., Hausmann, M. & Cremer, C. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J. Microsc. 242, 46–54 (2011).

    CAS  PubMed  Google Scholar 

  21. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rames, M., Yu, Y. & Ren, G. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J. Vis. Exp. (90) e51087 http://dx.doi.org/10.3791/51087 (2014).

    Google Scholar 

  23. Booth, D.S., Avila-Sakar, A. & Cheng, Y. Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J. Vis. Exp. http://dx.doi.org/10.3791/51087 (2011).

  24. Shukla, A.K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roh, S.H. et al. Subunit conformational variation within individual GroEL oligomers resolved by cryo-EM. Proc. Natl. Acad. Sci. USA 114, 8259–8264 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hite, R.K., Tao, X. & MacKinnon, R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature 541, 52–57 (2017).

    CAS  PubMed  Google Scholar 

  27. Gao, Y. et al. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. J. Biol. Chem. 292, 14280–14289 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, F. & Jiang, W. Single particle cryo-electron microscopy and 3-D reconstruction of viruses. Methods Mol. Biol. 1117, 401–443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A.W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    CAS  PubMed  Google Scholar 

  30. Dong, Y. et al. Antibody-induced uncoating of human rhinovirus B14. Proc. Natl. Acad. Sci. USA 114, 8017–8022 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang, Y.L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016).

    PubMed  Google Scholar 

  34. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    CAS  PubMed  Google Scholar 

  35. Irobalieva, R.N., Martins, B. & Medalia, O. Cellular structural biology as revealed by cryo-electron tomography. J. Cell Sci. 129, 469–476 (2016).

    CAS  PubMed  Google Scholar 

  36. Oikonomou, C.M. & Jensen, G.J. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873–896 (2017).

    CAS  PubMed  Google Scholar 

  37. Liu, L., Boldon, L., Urquhart, M. & Wang, X. Small and wide angle X-ray scattering studies of biological macromolecules in solution. J. Vis. Exp. http://dx.doi.org/10.3791/4160 (2013).

  38. Vachette, P., Koch, M.H. & Svergun, D.I. Looking behind the beamstop: X-ray solution scattering studies of structure and conformational changes of biological macromolecules. Methods Enzymol. 374, 584–615 (2003).

    CAS  PubMed  Google Scholar 

  39. Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    CAS  PubMed  Google Scholar 

  40. Odom, B., Hanneke, D., D'Urso, B. & Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006).

    CAS  PubMed  Google Scholar 

  41. Altenbach, C., Flitsch, S.L., Khorana, H.G. & Hubbell, W.L. Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28, 7806–7812 (1989).

    CAS  PubMed  Google Scholar 

  42. Altenbach, C., Marti, T., Khorana, H.G. & Hubbell, W.L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990).

    CAS  PubMed  Google Scholar 

  43. Elsasser, C., Brecht, M. & Bittl, R. Pulsed electron-electron double resonance on multinuclear metal clusters: assignment of spin projection factors based on the dipolar interaction. J. Am. Chem. Soc. 124, 12606–12611 (2002).

    PubMed  Google Scholar 

  44. Endeward, B., Butterwick, J.A., MacKinnon, R. & Prisner, T.F. Pulsed electron-electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA. J. Am. Chem. Soc. 131, 15246–15250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Konermann, L., Vahidi, S. & Sowole, M.A. Mass spectrometry methods for studying structure and dynamics of biological macromolecules. Anal. Chem. 86, 213–232 (2014).

    CAS  PubMed  Google Scholar 

  46. West, G.M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR beta2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lodowski, D.T., Palczewski, K. & Miyagi, M. Conformational changes in the g protein-coupled receptor rhodopsin revealed by histidine hydrogen-deuterium exchange. Biochemistry 49, 9425–9427 (2010).

    CAS  PubMed  Google Scholar 

  48. Zhou, M. & Robinson, C.V. Flexible membrane proteins: functional dynamics captured by mass spectrometry. Curr. Opin. Struct. Biol. 28, 122–130 (2014).

    CAS  PubMed  Google Scholar 

  49. Ishii, K., Noda, M. & Uchiyama, S. Mass spectrometric analysis of protein-ligand interactions. Biophys. Physicobiol. 13, 87–95 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liko, I., Allison, T.M., Hopper, J.T. & Robinson, C.V. Mass spectrometry guided structural biology. Curr. Opin. Struct. Biol. 40, 136–144 (2016).

    CAS  PubMed  Google Scholar 

  52. Artigues, A. et al. Protein structural analysis via mass spectrometry-based proteomics. Adv. Exp. Med. Biol. 919, 397–431 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Petrotchenko, E.V. & Borchers, C.H. Modern mass spectrometry-based structural proteomics. Adv. Protein Chem. Struct. Biol. 95, 193–213 (2014).

    CAS  PubMed  Google Scholar 

  54. Serpa, J.J. et al. Mass spectrometry-based structural proteomics. Eur. J. Mass Spectrom. 18, 251–267 (2012).

    CAS  Google Scholar 

  55. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    CAS  PubMed  Google Scholar 

  56. Walzthoeni, T., Leitner, A., Stengel, F. & Aebersold, R. Mass spectrometry supported determination of protein complex structure. Curr. Opin. Struct. Biol. 23, 252–260 (2013).

    CAS  PubMed  Google Scholar 

  57. Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    CAS  PubMed  Google Scholar 

  58. Ghanouni, P., Steenhuis, J.J., Farrens, D.L. & Kobilka, B.K. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reiner, S., Ambrosio, M., Hoffmann, C. & Lohse, M.J. Differential signaling of the endogenous agonists at the beta2-adrenergic receptor. J. Biol. Chem. 285, 36188–36198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Swaminath, G. et al. Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165–22171 (2005).

    CAS  PubMed  Google Scholar 

  61. Yao, X. et al. Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat. Chem. Biol. 2, 417–422 (2006).

    CAS  PubMed  Google Scholar 

  62. Bokoch, M.P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nygaard, R. et al. The dynamic process of beta(2)-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, S., Lee, S.Y. & Chung, K.Y. Conformational analysis of G protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry. Methods Enzymol. 557, 261–278 (2015).

    CAS  PubMed  Google Scholar 

  65. Kahsai, A.W. et al. Multiple ligand-specific conformations of the beta2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kahsai, A.W., Rajagopal, S., Sun, J. & Xiao, K. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nat. Protoc. 9, 1301–1319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao, K. et al. Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. USA 104, 12011–12016 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao, K. & Shenoy, S.K. Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. J. Biol. Chem. 286, 12785–12795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao, K., Shenoy, S.K., Nobles, K. & Lefkowitz, R.J. Activation-dependent conformational changes in {beta}-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004).

    CAS  PubMed  Google Scholar 

  70. Xiao, K. et al. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc. Natl. Acad. Sci. USA 107, 15299–15304 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xie, L. et al. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci. Signal. 2, ra33 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Nobles, K.N., Guan, Z., Xiao, K., Oas, T.G. & Lefkowitz, R.J. The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007).

    CAS  PubMed  Google Scholar 

  73. Nobles, K.N. et al. Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci. Signal. 4, ra51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Petrotchenko, E.V. et al. BiPS, a photocleavable, isotopically coded, fluorescent cross-linker for structural proteomics. Mol. Cell. Proteomics 8, 273–286 (2009).

    CAS  PubMed  Google Scholar 

  75. Englander, J.J. et al. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 7057–7062 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Englander, S.W. Hydrogen exchange and mass spectrometry: a historical perspective. J. Am. Soc. Mass Spectrom. 17, 1481–1489 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Busenlehner, L.S. & Armstrong, R.N. Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch. Biochem. Biophys. 433, 34–46 (2005).

    CAS  PubMed  Google Scholar 

  78. Wales, T.E. & Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    CAS  PubMed  Google Scholar 

  79. Maier, C.S. & Deinzer, M.L. Protein conformations, interactions, and H/D exchange. Methods Enzymol. 402, 312–360 (2005).

    CAS  PubMed  Google Scholar 

  80. Zhang, Z. & Smith, D.L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 2, 522–531 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Konermann, L., Pan, J. & Liu, Y.H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011).

    CAS  PubMed  Google Scholar 

  82. Chalmers, M.J., Busby, S.A., Pascal, B.D., West, G.M. & Griffin, P.R. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev. Proteomics 8, 43–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kan, Z.Y., Walters, B.T., Mayne, L. & Englander, S.W. Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc. Natl. Acad. Sci. USA 110, 16438–16443 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem. Sci. 41, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  85. Rappsilber, J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 173, 530–540 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dobson, C.L. et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci. Rep. 6, 38644 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bhat, J.Y. et al. Mechanism of enzyme repair by the AAA+ chaperone rubisco activase. Mol. Cell 67, 744.e6–756.e6 (2017).

    Google Scholar 

  88. Rozbesky, D. et al. Chemical cross-linking and H/D exchange for fast refinement of protein crystal structure. Anal. Chem. 84, 867–870 (2012).

    CAS  PubMed  Google Scholar 

  89. Haladova, K. et al. The combination of hydrogen/deuterium exchange or chemical cross-linking techniques with mass spectrometry: mapping of human 14-3-3zeta homodimer interface. J. Struct. Biol. 179, 10–17 (2012).

    CAS  PubMed  Google Scholar 

  90. Mendoza, V.L. & Vachet, R.W. Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28, 785–815 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McKee, C.J., Kessl, J.J., Norris, J.O., Shkriabai, N. & Kvaratskhelia, M. Mass spectrometry-based footprinting of protein-protein interactions. Methods 47, 304–307 (2009).

    CAS  PubMed  Google Scholar 

  92. Liu, H. et al. Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the Cyanobacterium Synechocystis 6803. J. Biol. Chem. 288, 14212–14220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kobilka, B.K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995).

    CAS  PubMed  Google Scholar 

  94. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahn, J., Jung, M.C., Wyndham, K., Yu, Y.Q. & Engen, J.R. Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal. Chem. 84, 7256–7262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Belov, M.E. et al. Automated gain control and internal calibration with external ion accumulation capillary liquid chromatography-electrospray ionization Fourier transform ion cyclotron resonance. Anal. Chem. 75, 4195–4205 (2003).

    CAS  PubMed  Google Scholar 

  97. Wales, T.E., Eggertson, M.J. & Engen, J.R. Considerations in the analysis of hydrogen exchange mass spectrometry data. Methods Mol. Biol. 1007, 263–288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kazazic, S. et al. Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 550–558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rand, K.D., Adams, C.M., Zubarev, R.A. & Jorgensen, T.J. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J. Am. Chem. Soc. 130, 1341–1349 (2008).

    CAS  PubMed  Google Scholar 

  100. Zehl, M., Rand, K.D., Jensen, O.N. & Jorgensen, T.J. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J. Am. Chem. Soc. 130, 17453–17459 (2008).

    CAS  PubMed  Google Scholar 

  101. Zhang, X. et al. Dynamics of the beta2-adrenergic G-protein coupled receptor revealed by hydrogen-deuterium exchange. Anal. Chem. 82, 1100–1108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Haas, W. et al. Optimization and use of peptide mass measurement accuracy in shotgun proteomics. Mol. Cell. Proteomics 5, 1326–1337 (2006).

    CAS  PubMed  Google Scholar 

  103. Thevenon-Emeric, G., Kozlowski, J., Zhang, Z. & Smith, D.L. Determination of amide hydrogen exchange rates in peptides by mass spectrometry. Anal. Chem. 64, 2456–2458 (1992).

    CAS  PubMed  Google Scholar 

  104. Keppel, T.R., Howard, B.A. & Weis, D.D. Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry. Biochemistry 50, 8722–8732 (2011).

    CAS  PubMed  Google Scholar 

  105. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS  PubMed  Google Scholar 

  107. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS  PubMed  Google Scholar 

  108. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    CAS  PubMed  Google Scholar 

  109. Kang, Y. et al. A structural snapshot of the rhodopsin-arrestin complex. FEBS J. 283, 816–821 (2016).

    CAS  PubMed  Google Scholar 

  110. Bui, K.H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

    CAS  PubMed  Google Scholar 

  111. Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207–1219 (2013).

    CAS  PubMed  Google Scholar 

  112. Murakami, K. et al. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342, 1238724 (2013).

    PubMed  PubMed Central  Google Scholar 

  113. Cormann, K.U., Moller, M. & Nowaczyk, M.M. Critical assessment of protein cross-linking and molecular docking: an updated model for the interaction between photosystem II and Psb27. Front. Plant Sci. 7, 157 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Powell, C.J. et al. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. J. Biol. Chem. 292, 19469–19477 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Stjepanovic, G. et al. Assembly and dynamics of the autophagy-initiating Atg1 complex. Proc. Natl. Acad. Sci. USA 111, 12793–12798 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Di Michele, M. et al. Limited proteolysis combined with stable isotope labeling reveals conformational changes in protein (pseudo)kinases upon binding small molecules. J. Proteome Res. 14, 4179–4193 (2015).

    CAS  PubMed  Google Scholar 

  117. O'Brien, D.P. et al. SEC-SAXS and HDX-MS: a powerful combination. The case of the calcium-binding domain of a bacterial toxin. Biotechnol. Appl. Biochem. 65, 62–68 (2017).

    PubMed  Google Scholar 

  118. He, W. et al. Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc. Natl. Acad. Sci. USA 108, 12307–12312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tian, S. et al. Pih1p-Tah1p puts a lid on hexameric AAA+ ATPases Rvb1/2p. Structure 25, 1519.e4–1529.e4 (2017).

    Google Scholar 

  120. Hamuro, Y. et al. Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. J. Biomol. Tech. 14, 171–182 (2003).

    PubMed  PubMed Central  Google Scholar 

  121. Horn, J.R. et al. The role of protein dynamics in increasing binding affinity for an engineered protein-protein interaction established by H/D exchange mass spectrometry. Biochemistry 45, 8488–8498 (2006).

    CAS  PubMed  Google Scholar 

  122. Pascal, B.D. et al. HDX workbench: software for the analysis of H/D exchange MS data. J. Am. Soc. Mass Spectrom. 23, 1512–1521 (2012).

    CAS  PubMed  Google Scholar 

  123. Guttman, M., Weis, D.D., Engen, J.R. & Lee, K.K. Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J. Am. Soc. Mass Spectrom. 24, 1906–1912 (2013).

    CAS  PubMed  Google Scholar 

  124. Kan, Z.Y., Mayne, L., Chetty, P.S. & Englander, S.W. ExMS: data analysis for HX-MS experiments. J. Am. Soc. Mass Spectrom. 22, 1906–1915 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lindner, R. et al. Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation. J. Am. Soc. Mass Spectrom. 25, 1018–1028 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lou, X. et al. Deuteration distribution estimation with improved sequence coverage for HX/MS experiments. Bioinformatics 26, 1535–1541 (2010).

    CAS  PubMed  Google Scholar 

  127. Rey, M. et al. Mass spec studio for integrative structural biology. Structure 22, 1538–1548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wei, H. et al. Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J. Am. Soc. Mass Spectrom. 23, 498–504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R.J. Lefkowitz (Duke University) and B.K. Kobilka (Stanford University) for invaluable guidance and enthusiastic support, and A.K. Shukla and A.W. Kahsai for stimulating ideas. This work was supported, in part, by US National Institutes of Health grant HL-075443 Proteomics Core support to K.X. This publication was also made possible by seed funding support to K.X. from the Department of Pharmacology and Chemical Biology, the University of Pittsburgh, the Vascular Medicine Institute, the Hemophilia Center of Western Pennsylvania, and the Institute for Transfusion Medicine.

Author information

Authors and Affiliations

Authors

Contributions

K.X. conceived the orthogonal approach combining HDXMS, CXMS, and disulfide trapping, and designed the experiments; S.L. conducted the HDXMS experiments; J.Q. conducted the CXMS experiments; M.C. conducted the disulfide-trapping experiments; K.X., Y.Z., H.L., A.B., T.J.C., X.L., Y.X., L.J.C., and S.L. analyzed data and wrote the paper; all authors read, edited, and discussed the paper.

Corresponding authors

Correspondence to Kunhong Xiao or Sheng Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Zhao, Y., Choi, M. et al. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 13, 1403–1428 (2018). https://doi.org/10.1038/nprot.2018.037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing