Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes

Abstract

The efficacy of antibacterial molecules depends on their capacity to reach inhibitory concentrations in the vicinity of their target. This is particularly challenging for drugs directed against Gram-negative bacteria, which have a complex envelope comprising two membranes and efflux pumps. Precise determination of the bacterial drug content is an essential prerequisite for drug development. Here we describe three approaches that have been developed in our laboratories to quantify drugs accumulated in intact cells by spectrofluorimetry, microspectrofluorimetry, and kinetics microspectrofluorimetry (KMSF). These different procedures provide complementary results that highlight the contribution of membrane-associated mechanisms, including influx through the outer membrane (OM) and efflux, and the importance of the physicochemical properties of the transported drugs for the intracellular concentration of a given antibiotic in a given bacterial population. The three key stages of this protocol are preparation of the bacterial strains in the presence of the antibiotic; preparation of the whole-cell lysates (WCLs) and fluorescence readings; and data analysis, including normalization and quantitation of the intracellular antibiotic fluorescence relative to the internal standard and the antibiotic standard curve, respectively. Fluorimetry is limited to naturally fluorescent or labeled compounds, but in contrast to existing alternative methods such as mass spectrometry, it uniquely allows single-cell analysis. From culture growth to data analysis, the protocol described here takes 5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the three options described in Step 6 of the Procedure.
Figure 2: Spectrofluorimetry (Step 6A).
Figure 3: Microspectrofluorimetry (Step 6B).
Figure 4: An example of a KMSF experiment and collected data (Step 6C).

Similar content being viewed by others

References

  1. Boucher, H.W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    PubMed  Google Scholar 

  2. US Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. CDC.gov https://www.cdc.gov/drugresistance/threat-report-2013/index.html (2013).

  3. O'Neill, J. Tackling a Crisis for the Health and Welfare of Nations (Review on Antimicrobial Resistance, London, 2014).

  4. World Health Organization, Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis WHO, (2017).

  5. Stavenger, R.A. & Winterhalter, M. TRANSLOCATION project: how to get good drugs into bad bugs. Sci. Transl. Med. 6, 228ed7 (2014).

    PubMed  Google Scholar 

  6. O'Shea, R. & Moser, H.E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    CAS  PubMed  Google Scholar 

  7. Brown, D.G. et al. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J. Med. Chem. 57, 10144–10161 (2014).

    CAS  PubMed  Google Scholar 

  8. Page, M.G.P. & Bush, K. Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: is the future promising? Curr. Opin. Pharmacol. 18, 91–97 (2014).

    CAS  PubMed  Google Scholar 

  9. Payne, D.J et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  PubMed  Google Scholar 

  10. Boucher, H.W. et al. 10 × ′20 Progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin. Infect. Dis. 56, 1685–1694 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Zgurskaya, H.I., López, C.A. & Gnanakaran, S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 1, 512–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Krishnamoorthy, G. et al. Breaking the permeability barrier of Escherichia coli by controlled hyperporination of the outer membrane. Antimicrob. Agents Chemother. 60, 7372–7381 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nikaido, H., Rosenberg, E.Y. & Foulds, J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J. Bacteriol. 153, 232–240 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshimura, F. & Nikaido, H. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27, 84–92 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hancock, R.E. The bacterial outer membrane as a drug barrier. Trends Microbiol. 5, 37–42 (1997).

    CAS  PubMed  Google Scholar 

  17. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pagès, J.-M., James, C.E. & Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6, 893–903 (2008).

    PubMed  Google Scholar 

  19. Kojima, S. & Nikaido, H. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl. Acad. Sci. USA 110, E2629–E2634 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Silver, L.L. A Gestalt approach to Gram-negative entry. Bioorg. Med. Chem. 24, 6379–6389 (2016).

    CAS  PubMed  Google Scholar 

  21. Masi, M. et al. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2, 17001 (2017).

    CAS  PubMed  Google Scholar 

  22. Nikaido, H. & Pagès, J.-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 36, 340–363 (2012).

    CAS  PubMed  Google Scholar 

  23. Li, Z.H., Plesiat, P. & Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Nagano, K. & Nikaido, H. Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 106, 5854–5858 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, S.P. & Nikaido, H. Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob. Agents Chemother. 54, 1800–1806 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davin-Regli, A. et al. Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr. Drug Targets 9, 750–759 (2008).

    CAS  PubMed  Google Scholar 

  27. Blair, J.M. et al. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  28. Blair, J.M. & Piddock, L.J. How to measure export via bacterial multidrug resistance efflux pumps. MBio 7, e00840-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Kašˇáková, S. et al. Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution. PLoS One 7, e38624 (2012).

    Google Scholar 

  30. Pagès, J.-M. et al. New peptide-based antimicrobials for tackling drug resistance in bacteria: single-cell fluorescence imaging. ACS Med. Chem. Lett. 4, 556–559 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Cinquin, B. et al. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci. Rep. 5, 17968 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Allam, A. et al. Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative bacteria. Sci. Rep. 7, 986 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Vergalli, J. et al. Fluoroquinolone structure and translocation flux across bacterial membrane. Sci. Rep. 7, 9821 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Ritchie, K. et al. Single-molecule imaging in live bacteria cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120355 (2012).

    PubMed  Google Scholar 

  35. Deris, Z.Z. et al. Probing the penetration of antimicrobial polymyxin lipopeptides into Gram-negative bacteria. Bioconjug. Chem. 25, 750–760 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chileveru, H.R. et al. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 54, 1767–1777 (2015).

    CAS  PubMed  Google Scholar 

  37. Phetsang, W. et al. Fluorescent trimethoprim conjugate probes to assess drug accumulation in wild type and mutant Escherichia coli. ACS Infect. Dis. 2, 688–701 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Davis, T.D., Gerry, C.J. & Tan, D.S. General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem. Biol. 9, 2535–2344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Richter, M.F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Westfall, D.A. et al. Bifurcation kinetics of drug uptake by Gram-negative bacteria. PLoS One 12, e0184671 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Zgurskaya, H.I. & Nikaido, H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 7190–7195 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Winterhalter, M. & Ceccarelli, M. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria. Eur. J. Pharm. Biopharm. 95, 63–67 (2015).

    CAS  PubMed  Google Scholar 

  43. Picard, M. et al. Biochemical reconstitution and characterization of multicomponent drug efflux transporters. Methods Mol. Biol. 1700, 113–145 (2018).

    CAS  PubMed  Google Scholar 

  44. Joos, B et al. Comparison of high-pressure liquid chromatography and bioassay for determination of ciprofloxacin in serum and urine. Antimicrob. Agents Chemother. 27, 353–356 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morton, S.J., Shull, V.H. & Dickn, J.D. Determination of norfloxacin and ciprofloxacin concentrations in serum and urine by high-pressure liquid chromatography. Antimicrob. Agents Chemother. 30, 325–327 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chapman, J.S. & Georgopapadakou, N.H. Fluorometric assay for fleroxacin uptake by bacterial cells. Antimicrob. Agents Chemother. 33, 27–29 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mortimer, P.G. & Piddock, L.J. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32, 195–213 (1993).

    CAS  PubMed  Google Scholar 

  48. Piddock, L.J et al. Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 43, 61–70 (1999).

    CAS  PubMed  Google Scholar 

  49. Ricci, V. & Piddock, L.J. Accumulation of norfloxacin by Bacteroides fragilis. Antimicrob. Agents Chemother. 44, 2361–2366 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Piddock, L.J. & Ricci, V. Accumulation of five fluoroquinolones by Mycobacterium tuberculosis H37Rv. J. Antimicrob. Chemother. 48, 787–791 (2001).

    CAS  PubMed  Google Scholar 

  51. Piddock, L.J. & Johnson, M.M. Accumulation of 10 fluoroquinolones by wild-type or efflux mutant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 813–820 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bolla, J.-M. et al. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 585, 1682–1690 (2011).

    CAS  PubMed  Google Scholar 

  53. Bassetti, M. & Righi, E. New antibiotics and antimicrobial combination therapy for the treatment of Gram-negative bacterial infections. Curr. Opin. Crit. Care 21, 402–411 (2015).

    PubMed  Google Scholar 

  54. Brown, D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov. 14, 821–832 (2015).

    CAS  PubMed  Google Scholar 

  55. Wright, G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 24, 862–871 (2016).

    CAS  PubMed  Google Scholar 

  56. González-Bello, C. Antibiotic adjuvants—a strategy to unlock bacterial resistance to antibiotics Bioorg. 27, 4221–4228 (2017).

  57. Haynes, K.M. et al. Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. J. Med. Chem. 60, 6205–6219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jamme, F. et al. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 16, 507–514 (2010).

    CAS  PubMed  Google Scholar 

  59. Batard, E. et al. Diffusion of ofloxacin in the endocarditis vegetation assessed with synchrotron radiation UV fluorescence microspectroscopy. PLoS One 6, e19440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jamme, F. et al. Deep UV autofluorescence microscopy for cell biology and tissue histology. Biol. Cell 105, 277–828 (2013).

    CAS  PubMed  Google Scholar 

  61. Bauer, J. et al. A combined pharmacodynamics quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 57, 2726–2737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Boudjemaa, R. et al. New insight into daptomycin bioavailability and localization in Staphylococcus aureus biofilms by dynamic fluorescence imaging. Antimicrob. Agents Chemother. 60, 4983–4990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pienaar, E. et al. Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach. PLoS Comput. Biol. 13, e1005650 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Pradel, E. & Pagès, J.-M. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob. Agents Chemother. 46, 2640–2643 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. George, A.M. & Levy, S.B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155, 531–540 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Okusu, H. et al. Efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pantel, A. et al. French regional surveillance program of carbapenemase-producing Gram-negative bacilli: results from a 2-year period. Eur. J. Clin. Microbiol. Infect. Dis. 33, 2285–2292 (2014).

    CAS  PubMed  Google Scholar 

  68. Philippe, N. et al. In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLoS One 10, e0138828 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Bornet, C. et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 301, 985–990 (2003).

    CAS  PubMed  Google Scholar 

  70. Dupont, M., James, C.E., Chevalier, J. & Pagès, J.-M. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob. Agents Chemother. 51, 3190–3198 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to I. Artaud for her commitment and motivation during the development of this original approach. We also thank A. Davin-Regli, R. Stavenger and M. Winterhalter for their fruitful discussions, and A.-M. Tran, V. Rouam and B. Pineau for technical assistance. The research leading to these results was conducted as part of the TRANSLOCATION consortium, and it has received support from the Innovative Medicines Initiatives Joint Undertaking under Grant Agreement no. 115525, resources that are composed of financial contribution from the European Union's seventh framework program (FP7/2007–2013), and EFPIA companies in kind contribution. J.V., E.D., J.P., B.C., L.M., and M.M. are funded by IMI-Translocation (grant 115525). This work was also supported by Aix-Marseille University and Service de Santé des Armées, and by Soleil program (project nos. 20130061, 20130949, 20140047, 20141262, 20150318, 20151274, and 20160173).

Author information

Authors and Affiliations

Authors

Contributions

J.V., E.D., J.P., B.C., L.M., M.M., M.R. and J.-M.P. all contributed equally to manuscript writing.

Corresponding author

Correspondence to Jean-Marie Pagés.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergalli, J., Dumont, E., Pajović, J. et al. Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 13, 1348–1361 (2018). https://doi.org/10.1038/nprot.2018.036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing