Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-infrared light–controlled systems for gene transcription regulation, protein targeting and spectral multiplexing

Abstract

Near-infrared (NIR, 740–780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1–QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1–QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1–QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3–5 d. Use of NIR light–controlled optogenetic systems should advance basic and biomedical research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mode of function of the NIR- and blue-light-inducible transcription activation systems.
Figure 2: Mode of function of the light-controllable tridirectional subcellular targeting system.
Figure 3: Light-sensitivity of the iRIS optogenetic tool.
Figure 4: Setup for the LED illumination.
Figure 5: Spectral compatibility of the BphP1–QPAS1 and blue-light-activatable transcription systems.
Figure 6: Two-color light-controlled tridirectional intracellular protein targeting.

References

  1. 1

    Taslimi, A. et al. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 12, 425–430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    CAS  PubMed  Google Scholar 

  4. 4

    Kaberniuk, A.A., Shemetov, A.A. & Verkhusha, V.V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Redchuk, T.A., Omelina, E.S., Chernov, K.G. & Verkhusha, V.V. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat. Chem. Biol. 13, 633–639 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Shcherbakova, D.M., Shemetov, A.A., Kaberniuk, A.A. & Verkhusha, V.V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Ulijasz, A.T. & Vierstra, R.D. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Curr. Opin. Plant Biol. 14, 498–506 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Piatkevich, K.D., Subach, F.V. & Verkhusha, V.V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42, 3441–3452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Tran, M.T. et al. In vivo image analysis using iRFP transgenic mice. Exp. Anim. 63, 311–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    CAS  PubMed  Google Scholar 

  11. 11

    Jacques, S.L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    PubMed  Google Scholar 

  12. 12

    Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Asakawa, K. & Kawakami, K. Targeted gene expression by the Gal4-UAS system in zebrafish. Dev. Growth Differ. 50, 391–399 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Halpern, M.E. et al. Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5, 97–110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Smart, A.D. et al. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo. Proc. Natl. Acad. Sci. USA 114, E8174–E8183 (2017).

    CAS  PubMed  Google Scholar 

  16. 16

    Harterink, M. et al. Light-controlled intracellular transport in Caenorhabditis elegans. Curr. Biol. 26, R153–R154 (2016).

    CAS  PubMed  Google Scholar 

  17. 17

    Reade, A. et al. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development 144, 345–355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Buckley, C.E. et al. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell 36, 117–126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Polstein, L.R., Juhas, M., Hanna, G., Bursac, N. & Gersbach, C.A. An engineered optogenetic switch for spatiotemporal control of gene expression, cell differentiation, and tissue morphogenesis. ACS Synth. Biol. 6, 2003–2013 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Fernandez-Rodriguez, J., Moser, F., Song, M. & Voigt, C.A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13, 706–708 (2017).

    CAS  PubMed  Google Scholar 

  21. 21

    Muller, K. et al. Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res. 41, e124 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Reichhart, E., Ingles-Prieto, A., Tichy, A.M., McKenzie, C. & Janovjak, H. A phytochrome sensory domain permits receptor activation by red light. Angew Chem. Int. Ed. Engl. 55, 6339–6342 (2016).

    CAS  PubMed  Google Scholar 

  23. 23

    Yazawa, M., Sadaghiani, A.M., Hsueh, B. & Dolmetsch, R.E. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 27, 941–945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Müller, K. et al. Synthesis of phycocyanobilin in mammalian cells. Chem. Commun. (Camb.) 49, 8970–8972 (2013).

    Google Scholar 

  26. 26

    Ryu, M.H. et al. Engineering adenylate cyclases regulated by near-infrared window light. Proc. Natl. Acad. Sci. USA 111, 10167–10172 (2014).

    CAS  PubMed  Google Scholar 

  27. 27

    Gasser, C. et al. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc. Natl. Acad. Sci. USA 111, 8803–8808 (2014).

    CAS  PubMed  Google Scholar 

  28. 28

    Yumerefendi, H. et al. Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS One 10, e0128443 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    CAS  Google Scholar 

  30. 30

    Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Chernov, K.G., Redchuk, T.A., Omelina, E.S. & Verkhusha, V.V. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem. Rev. 117, 6423–6446 (2017).

    CAS  PubMed  Google Scholar 

  32. 32

    Oliinyk, O.S., Chernov, K.G. & Verkhusha, V.V. Bacterial phytochromes, cyanobacteriochromes and allophycocyanins as a source of near-infrared fluorescent probes. Int. J. Mol. Sci. 18, 1691 (2017).

    PubMed Central  Google Scholar 

  33. 33

    Albanese, C., Hulit, J., Sakamaki, T. & Pestell, R.G. Recent advances in inducible expression in transgenic mice. Semin. Cell Dev. Biol. 13, 129–141 (2002).

    CAS  PubMed  Google Scholar 

  34. 34

    Pham, D.H., Moretti, P.A., Goodall, G.J. & Pitson, S.M. Attenuation of leakiness in doxycycline-inducible expression via incorporation of 3 AU-rich mRNA destabilizing elements. Biotechniques 45, 155–156 (2008).

    CAS  PubMed  Google Scholar 

  35. 35

    Rennel, E. & Gerwins, P. How to make tetracycline-regulated transgene expression go on and off. Anal. Biochem. 309, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  36. 36

    Yu, G. et al. Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems. Sci. Rep. 6, 35777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Müller, K., Zurbriggen, M.D. & Weber, W. Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat. Protoc. 9, 622–632 (2014).

    PubMed  Google Scholar 

  38. 38

    Yumerefendi, H. et al. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. Nat. Chem. Biol. 12, 399–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Niopek, D. et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5, 4404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Niopek, D., Wehler, P., Roensch, J., Eils, R. & Di Ventura, B. Optogenetic control of nuclear protein export. Nat. Commun. 7, 10624 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fixen, K.R., Baker, A.W., Stojkovic, E.A., Beatty, J.T. & Harwood, C.S. Apo-bacteriophytochromes modulate bacterial photosynthesis in response to low light. Proc. Natl. Acad. Sci. USA 111, E237–E244 (2014).

    CAS  PubMed  Google Scholar 

  42. 42

    Piatkevich, K. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Mátés, L. et al. Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Google Scholar 

  46. 46

    Liu, Z. et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 7, 2193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Licursi, M., Christian, S.L., Pongnopparat, T. & Hirasawa, K. In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Ther. 18, 631–636 (2011).

    CAS  PubMed  Google Scholar 

  48. 48

    Pumroy, R.A. & Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Jozkowicz, A., Was, H. & Dulak, J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid. Redox Signal 9, 2099–2117 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Filonov, G.S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants GM122567 and NS103573 from the US National Institutes of Health, ERC-2013-ADG-340233 from the EU 7th Framework Programme (FP7), and grants 263371 and 266992 from the Academy of Finland.

Author information

Affiliations

Authors

Contributions

T.A.R. and A.A.K. performed the experiments. V.V.V. directed and planned the project, and, together with T.A.R. and A.A.K., designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Vladislav V Verkhusha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Optical properties of mammalian tissues.

(a) Light penetration depth at 480 nm, 560 nm, 670 nm and 720 nm wavelengths in a muscle tissue. Adapted with permission from suppl. ref. 31, Nature Publishing Group (b) Molar extinction coefficient of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb). NIR tissue transparency window is shown as a red box. a adapted from Rumyantsev, K.A., Turoverov, K.K. & Verkhusha, V.V. Near-infrared bioluminescent proteins for two-color multimodal imaging. Sci. Rep. 6, 636588 (2016), Macmillan Publishers. b adapted with permission from Shcherbakova, D.M., Shemetov, A.A., Kaberniuk, A.A. & Verkhusha, V.V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem., 84, 519–550, © 2015 by Annual Reviews, http://www.annualreviews.org.

Supplementary Figure 2 Light-induced transcription activation of the TetR-responsive system.

(a) Mode of function of the light-inducible transcription activation system. NIR light converts BphP1 into the Pr state and induces its heterodimerization with PpsR2. The NLS fused to PpsR2 facilitates translocation of the heterodimer to the nucleus where BphP1 fusions interact with tetO DNA repeats via its fused TetR. VP16 fused to PpsR2 recruits the transcription initiation complex and triggers transcription of a reporter gene. (b) Kinetics of the light-to-dark ratio of the SEAP signal detected in the culture media of a HeLa cell line stably expressing BphP1-mCherry-TetR and co-transfected with NLS-PpsR2-VP16-producing plasmid and pTRE-Tight-SEAP (7× tetO) reporter plasmid. Samples were illuminated by 740 nm pulsing light (30 s ON, 180 s OFF) of 1 mW cm−2. Adapted from ref. 4, Nature Publishing Group.

Supplementary Figure 3 Light activation of gene expression in mice.

(a) Rluc8 bioluminescence detected in mice with subcutaneously injected HeLa cells stably expressing BphP1-mCherry-TetR and co-transfected with the NLS-PpsR2-VP16-producing plasmid and pTRE–Tight–Rluc8 reporter plasmid kept either in the dark (top) or illuminated with 740/25 nm light of 1 mW cm−2 (bottom) for 48 h. (b) Rluc8 signals detected in dark-treated animals and in illuminated animals shown in (a) (n = 3; error bars are s.e.m.). All animal experiments in this Protocol were performed in an AAALAC approved facility according to the permission #20160313 approved by the Albert Einstein College of Medicine Animal Usage Committee. a adapted from ref. 4, Nature Publishing Group.

Supplementary Figure 4 Light-controlled protein targeting using the iRIS tool.

(a) iRIS relocalization to the nucleus in HeLa cells in response to 460 nm illumination. Scale bar, 10 μm. (b) Intensity profile of mCherry fluorescence of iRIS in the cell shown in (a) marked with a dashed line before (black line) and after (red line) 10 min of 460 nm illumination. (c) iRIS relocalization to the plasma membrane in HeLa cells under 740 nm illumination. Scale bar, 10 μm. (d) Intensity profile of mCherry fluorescence of iRIS in the cell shown in (c) marked with a dashed line before (black line) and after (red line) 10 min of 740 nm illumination. Adapted from ref. 5, Nature Publishing Group.

Supplementary Figure 5 Light-controlled protein targeting using the iRIS tool (example data).

iRIS relocalization to the nucleus (a) and to the plasma membrane (b) in HeLa cells in response to 460 nm and 740 nm illumination, respectively. Scale bar, 10 μm. Good and poor quality results are shown, white arrows indicate non-specific signals (mCherry fluorescence on the plasma membrane under 460 nm light (a) and in the nucleus under 740 nm light (b)).

Supplementary Figure 6 Gating of mCherry-positive cells.

Non-transfected HeLa cells (a) are used to create a gate for FACS sorting of mCherry positive cells (b).

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Redchuk, T., Kaberniuk, A. & Verkhusha, V. Near-infrared light–controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nat Protoc 13, 1121–1136 (2018). https://doi.org/10.1038/nprot.2018.022

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing