Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and assessment of engineered CRISPR–Cpf1 and its use for genome editing

Abstract

Cpf1, a CRISPR endonuclease discovered in Prevotella and Francisella 1 bacteria, offers an alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR–Cas9 system originally discovered in Streptococcus pyogenes. This protocol enables the design of engineered CRISPR–Cpf1 components, both CRISPR RNAs (crRNAs) to guide the endonuclease and Cpf1 mRNAs to express the endonuclease protein, and provides experimental procedures for effective genome editing using this system. We also describe quantification of genome-editing activity and off-target effects of the engineered CRISPR–Cpf1 in human cell lines using both T7 endonuclease I (T7E1) assay and targeted deep sequencing. This protocol enables rapid construction and identification of engineered crRNAs and Cpf1 mRNAs to enhance genome-editing efficiency using the CRISPR–Cpf1 system, as well as assessment of target specificity within 2 months. This protocol may also be appropriate for fine-tuning other types of CRISPR systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the CRISPR–Cpf1 system.
Figure 2: A diagram of chemically modified RNA.
Figure 3
Figure 4: Assessment of genome-editing efficiency and specificity of the engineered CRISPR–Cpf1 system.
Figure 5: Targeted deep-sequencing analysis of on-target efficacy and off-target effects of the engineered CRISPR–Cpf1 system.

Similar content being viewed by others

References

  1. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    CAS  PubMed  Google Scholar 

  3. Kim, Y. et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat. Biotechnol. 34, 808–810 (2016).

    CAS  PubMed  Google Scholar 

  4. Zhang, Y. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci. Adv. 3, e1602814 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Watkins-Chow, D.E. et al. Highly-efficient Cpf1-mediated gene targeting in mice following high concentration pronuclear injection. G3: Genes Genomes Genet. 7, 719–722 (2016).

    Google Scholar 

  6. Endo, A., Masafumi, M., Kaya, H. & Toki, S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6, 38169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang, X. et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).

    CAS  PubMed  Google Scholar 

  9. Wang, M., Mao, Y., Lu, Y., Tao, X. & Zhu, J.K. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol. Plant 10, 1011–1013 (2017).

    CAS  PubMed  Google Scholar 

  10. Xu, R. et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15, 713–717 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin, X. et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. 36, 745–757 (2017).

    CAS  PubMed  Google Scholar 

  12. Hur, J.K. et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat. Biotechnol. 34, 807–808 (2016).

    CAS  PubMed  Google Scholar 

  13. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    CAS  PubMed  Google Scholar 

  15. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    CAS  PubMed  Google Scholar 

  17. Gao, P., Yang, H., Rajashankar, K.R., Huang, Z. & Patel, D.J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Swarts, D.C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233.e224 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stella, S., Alcon, P. & Montoya, G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546, 559–563 (2017).

    CAS  PubMed  Google Scholar 

  20. Li, B. et al. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 1, 0066 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Corey, D.R. Chemical modification: the key to clinical application of RNA interference? J. Clin. Invest. 117, 3615–3622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Deleavey, G.F. & Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    CAS  PubMed  Google Scholar 

  23. Burnett, J.C. & Rossi, J.J. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19, 60–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, B., Luo, X. & Dong, Y. Effects of chemically modified messenger RNA on protein expression. Bioconjug. Chem. 27, 849–853 (2016).

    CAS  PubMed  Google Scholar 

  25. Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    CAS  PubMed  Google Scholar 

  26. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, H.K. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153–159 (2017).

    CAS  PubMed  Google Scholar 

  28. Bae, S., Park, J. & Kim, J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cradick, T.J., Qiu, P., Lee, C.M., Fine, E.J. & Bao, G. COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol. Ther. Nucleic Acids 3, e214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rahdar, M. et al. Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proc. Natl. Acad. Sci. USA 112, E7110–E7117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    CAS  PubMed  Google Scholar 

  35. Anderson, B.R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kormann, M.S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    CAS  PubMed  Google Scholar 

  37. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  39. Andries, O. et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    CAS  PubMed  Google Scholar 

  40. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Uchida, S., Kataoka, K. & Itaka, K. Screening of mRNA chemical modification to maximize protein expression with reduced immunogenicity. Pharmaceutics 7, 137–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vouillot, L., Thélie, A. & Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: Genes Genomes Genet. 5, 407–415 (2015).

    CAS  Google Scholar 

  43. Goldman, D. & Domschke, K. Making sense of deep sequencing. Int. J. Neuropsychopharmacol. 17, 1717–1725 (2014).

    CAS  PubMed  Google Scholar 

  44. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge F. Zhang and his laboratory at the Broad Institute of MIT and Harvard for providing Cpf1 plasmids and technical assistance. This work was supported by the National Institutes of Health through the National Heart, Lung, and Blood Institute (NHLBI; R01HL136652), as well as by the start-up fund from the College of Pharmacy at The Ohio State University.

Author information

Authors and Affiliations

Authors

Contributions

B.L., C.Z., and Y.D. developed the protocol.

Corresponding author

Correspondence to Yizhou Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Representative examples of chemically modified nucleotides.

(a) Linkage (backbone)-modified nucleotides. (b) Ribose-modified nucleotides. (c) Nitrogenous base (cytosine, uracil, adenine, and guanine)-modified nucleotides. Natural nucleotides are shown in blue. The modified groups are shown in red.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1. (PDF 742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zeng, C. & Dong, Y. Design and assessment of engineered CRISPR–Cpf1 and its use for genome editing. Nat Protoc 13, 899–914 (2018). https://doi.org/10.1038/nprot.2018.004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research