Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA

Abstract

Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid–liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13C15N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the PLOR synthesis.
Figure 2: PLOR for different RNAs.
Figure 3: Application of PLOR in generating an isotopic-labeled sample for NMR study.
Figure 4: Application of PLOR in generating a fluorescently labeled sample for FRET study.
Figure 5: Application of PLOR in generating a sample labeled with heavy atoms for crystallographic study.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lu, K., Miyazaki, Y. & Summers, M.F. Isotope labeling strategies for NMR studies of RNA. J. Biomol. NMR 46, 113–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Duss, O., Lukavsky, P.J. & Allain, F.H. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. Adv. Exp. Med. Biol. 992, 121–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarado, L.J. et al. Chemo-enzymatic synthesis of selectively (1)(3)C/(1)(5)N-labeled RNA for NMR structural and dynamics studies. Methods Enzymol. 549, 133–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelissen, F.H. et al. Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucleic Acids Res. 36, e89 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin, L., Sheng, J. & Huang, Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chem. Soc. Rev. 40, 4591–4602 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Cate, J.H. & Doudna, J.A. Solving large RNA structures by X-ray crystallography. Methods Enzymol. 317, 169–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Moroder, H., Kreutz, C., Lang, K., Serganov, A. & Micura, R. Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J. Am. Chem. Soc. 128, 9909–9918 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Gasnier, M., Dennis, C., Vaurs-Barriere, C. & Chazaud, C. Fluorescent mRNA labeling through cytoplasmic FISH. Nat. Protoc. 8, 2538–2547 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Hikida, Y., Kimoto, M., Yokoyama, S. & Hirao, I. Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat. Protoc. 5, 1312–1323 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Pitchiaya, S., Heinicke, L.A., Custer, T.C. & Walter, N.G. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem. Rev. 114, 3224–3265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mairal, T. et al. Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem. 390, 989–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Soontornworajit, B. & Wang, Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal. Bioanal. Chem. 399, 1591–1599 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Paredes, E., Evans, M. & Das, S.R. RNA labeling, conjugation and ligation. Methods 54, 251–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Caruthers, M.H. The chemical synthesis of DNA/RNA: our gift to science. J. Biol. Chem. 288, 1420–1427 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Caruthers, M.H. A brief review of DNA and RNA chemical synthesis. Biochem. Soc. Trans. 39, 575–580 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lang, K. & Micura, R. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat. Protoc. 3, 1457–1466 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Moore, M.J. & Query, C.C. Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kurschat, W.C., Muller, J., Wombacher, R. & Helm, M. Optimizing splinted ligation of highly structured small RNAs. RNA 11, 1909–1914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y. et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522, 368–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, Y., Sousa, R. & Wang, Y.X. Specific labeling: an effective tool to explore the RNA world. Bioessays 38, 192–200 (2016).

    Article  PubMed  Google Scholar 

  21. Zuo, X. et al. Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3′ UTR of turnip crinkle virus. Proc. Natl. Acad. Sci. USA 107, 1385–1390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y.X., Zuo, X., Wang, J., Yu, P. & Butcher, S.E. Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 52, 180–191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stupina, V.A. et al. The 3′ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA 14, 2379–2393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reining, A. et al. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 499, 355–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leipply, D. & Draper, D.E. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Biochemistry 50, 2790–2799 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA-polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Pokrovskaya, I.D. & Gurevich, V.V. In vitro transcription: preparative RNA yields in analytical scale reactions. Anal. Biochem. 220, 420–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Sano, T., Vajda, S. & Cantor, C.R. Genetic engineering of streptavidin, a versatile affinity tag. J. Chromatogr. B Biomed. Sci. Appl. 715, 85–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kao, C., Zheng, M. & Rudisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo, Q., Nayak, D., Brieba, L.G. & Sousa, R. Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J. Mol. Biol. 353, 256–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Tang, G.Q., Roy, R., Bandwar, R.P., Ha, T. & Patel, S.S. Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Natl. Acad. Sci. USA 106, 22175–22180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, J., Brieba, L.G. & Sousa, R. Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry 39, 11571–11580 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. He, B. et al. Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr. Purif. 9, 142–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Pluthero, F.G. Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res. 21, 4850–4851 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  37. Zhang, J. & Ferr-D'Amaré, A.R. Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure 22, 1363–1371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. D66, 479–485 (2010).

    Article  Google Scholar 

  39. Korbie, D.J. & Mattick, J.S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3, 1452–1456 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Programs of the National Cancer Institute (Y.-X.W.). E.H. and D.J.N gratefully acknowledge funding for this work by the National Science Foundation (CHE 1266416 and PHY 1125844) and the National Institute for Standards and Technology. We thank S. Frey from Abteilung Zelluläre Logistik, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany, for providing us with the plasmid for His-tagged Taq DNA polymerase and the preparation protocol, and D. Draper from Johns Hopkins University for providing us with the plasmid for His-tagged T7 RNA polymerase.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed RNA synthesis, NMR experiments, and X-ray crystallography experiments, and wrote the manuscript; E.H. and D.N. designed and performed smFRET experiments; P.Y. performed enzyme preparation; R.S. provided critical advice on PLOR; J.R.S., K.T. and X.Z. performed X-ray crystallography experiments and data analysis; and Y.-X.W. designed PLOR. All authors revised the manuscript.

Corresponding authors

Correspondence to Yu Liu or Yun-Xing Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Holmstrom, E., Yu, P. et al. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat Protoc 13, 987–1005 (2018). https://doi.org/10.1038/nprot.2018.002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.002

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing