Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression

Abstract

Most currently available colorectal cancer (CRC) mouse models are not suitable for studying progression toward the metastatic stage. Recently, establishment of tumor organoid lines, either from murine CRC models or patients, and the possibility of engineering them with genome-editing technologies, have provided a large collection of tumor material faithfully recapitulating phenotypic and genetic heterogeneity of native tumors. To study tumor progression in the natural in vivo environment, we developed an orthotopic approach based on transplantation of CRC organoids into the cecal epithelium. The 20-min procedure is described in detail here and enables growth of transplanted organoids into a single tumor mass within the intestinal tract. Due to long latency, tumor cells are capable of spreading through the blood circulation and forming metastases at distant sites. This method is designed to generate tumors suitable for studying CRC progression, thereby providing the opportunity to visualize tumor cell dynamics in vivo in real time by intravital microscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and preparation of organoids for orthotopic transplantation.
Figure 2: Orthotopic transplantation of intestinal tumor organoids.
Figure 3: Analysis of the phenotypic outcome of orthotopically transplanted intestinal tumor organoids.
Figure 4: Intravital imaging of inter- and intra-tumor heterogeneity.

References

  1. Zauber, A.G. et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N. Engl. J. Med. 366, 687–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torre, L.A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  3. Corbett, T.H., Griswold, D.P. Jr., Roberts, B.J., Peckham, J.C. & Schabel, F.M. Jr. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res. 35, 2434–2439 (1975).

    CAS  PubMed  Google Scholar 

  4. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Deming, D.A. et al. PIK3CA and APC mutations are synergistic in the development of intestinal cancers. Oncogene 33, 2245–2254 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Hinoi, T. et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 67, 9721–9730 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, E.S. et al. Development of a colon cancer GEMM-derived orthotopic transplant model for drug discovery and validation. Clin. Cancer Res. 19, 2929–2940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. In, J.G. et al. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat. Rev. Gastroenterol. Hepatol. 13, 633–642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin, L., Liu, Y., Wang, J., Li, S. & Sato, Y. Neural and behavioral discrimination of sound duration by cats. J. Neurosci. 29, 15650–15659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koo, B.K. et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9, 81–83 (2012).

    Article  CAS  Google Scholar 

  14. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl. Acad. Sci. USA 114, E2357–E2364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20, 769–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hung, K.E. et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc. Natl. Acad. Sci. USA 107, 1565–1570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zechmann, C.M. et al. Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia 9, 57–67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fidler, I.J. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metast. Rev. 10, 229–243 (1991).

    Article  CAS  Google Scholar 

  29. Cespedes, M.V. et al. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am. J. Pathol. 170, 1077–1085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melo, F.S. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  CAS  Google Scholar 

  31. Enquist, I.B. et al. Lymph node-independent liver metastasis in a model of metastatic colorectal cancer. Nat. Commun. 5, 3530 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. O'Rourke, K.P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chassaing, B., Aitken, J.D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, Unit 15.25 (2014).

    Article  PubMed Central  Google Scholar 

  35. Zigmond, E. et al. Utilization of murine colonoscopy for orthotopic implantation of colorectal cancer. PLoS One 6, e28858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roper, J. et al. Colonoscopy-based colorectal cancer modeling in mice with CRISPR-Cas9 genome editing and organoid transplantation. Nat. Protoc. (2017).

  37. Byrne, A.T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Drost, J., Artegiani, B. & Clevers, H. The generation of organoids for studying Wnt signaling. Methods Mol. Biol. 1481, 141–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Koo, B.K. et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9, 81–83 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, X.Y., Besterman, J.M., Monosov, A. & Hoffman, R.M. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc. Natl. Acad. Sci. USA 88, 9345–9349 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klaver, Y.L., Lemmens, V.E., Nienhuijs, S.W., Luyer, M.D. & de Hingh, I.H. Peritoneal carcinomatosis of colorectal origin: incidence, prognosis and treatment options. World J. Gastroenterol. 18, 5489–5494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42 553, 555, 557 passim (2007).

Download references

Acknowledgements

We thank A. de Graaff and the Hubrecht Imaging Centre for imaging support. We thank O. Sansom and E. Hong Tan (Beatson Institute, Glasgow, UK) for providing the murine tumor organoid line. This work was financially supported by a Dutch Cancer Society Fellowship (BUIT-2013-5847 to S.J.E.S.), by the Dutch Cancer Society (KWF)/Alpe d′HuZes Bas Mulder Award (KWF/Alpe d′HuZes 10218, to J.D.), by European Research Council Grant CANCER-RECURRENCE 648804 (to J.v.R.), by the CancerGenomics.nl (Netherlands Organisation for Scientific Research) program (to J.v.R.), by the Doctor Josef Steiner Foundation (to J.v.R) and by the European Union′s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement no. 642866 (to J.v.R).

Author information

Authors and Affiliations

Authors

Contributions

A.F. developed the orthotopic transplantation technique; A.F. and J.D. performed the experiments; H.B., E.B. and S.J.E.S. helped with data analysis and preparation of the figures; S.J.E.S edited the video; K.C.O. and H.J.S. provided the patient-derived CRC organoids; J.D. and J.v.R. supervised the study; A.F., J.D. and J.v.R. wrote the manuscript.

Corresponding authors

Correspondence to Jacco van Rheenen or Jarno Drost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41596_2018_BFnprot2017137_MOESM136_ESM.mp4

Set up and demonstration of the surgical procedure to transplant CRC organoids into the caecal wall of recipient mice. (MP4 19876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumagalli, A., Suijkerbuijk, S., Begthel, H. et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat Protoc 13, 235–247 (2018). https://doi.org/10.1038/nprot.2017.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.137

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer