Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli

Abstract

Researchers in behavioral neuroscience have long sought imaging techniques that can identify and distinguish neural ensembles that are activated by sequentially applied stimuli at single-cell resolution across the whole brain. Taking advantage of the different kinetics of immediate–early genes' mRNA and protein expression, we addressed this problem by developing tyramide-amplified immunohistochemistry–fluorescence in situ hybridization (TAI-FISH), a dual-epoch neural-activity-dependent labeling protocol. Here we describe the step-by-step procedures for TAI-FISH on brain sections from mice that were sequentially stimulated by morphine (appetitive first stimulus) and foot shock (aversive second stimulus). We exemplify our approach by FISH-labeling the neural ensembles that were activated by the second stimulus for the mRNA expression of c-fos, a well-established marker of neural activation. We labeled neuronal ensembles activated by the first stimulus using fluorescence immunohistochemistry (IHC) for the c-fos protein. To further improve the temporal separation of the c-fos mRNA and protein signals, we provide instructions on how to enhance the protein signals using tyramide signal amplification (TSA). Compared with other dual-epoch labeling techniques, TAI-FISH provides better temporal separation of the activated neural ensembles and is better suited to investigation of whole-brain responses. TAI-FISH has been used to investigate neural activation patterns in response to appetitive and aversive stimuli, and we expect it to be more broadly utilized for visualizing brain responses to other types of stimuli, such as sensory stimuli or psychiatric drugs. From first stimulation to image analysis, TAI-FISH takes 9 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAI-FISH uses tyramide-based amplification to achieve robust temporal separation of IEG signals induced by two stimuli.
Figure 2: Schematic overview of TAI-FISH protocol.
Figure 3: TAI-FISH identifies and distinguishes activated neural patterns at single-neuron resolution across a whole brain.
Figure 4: Time course mapping for TAI-FISH and I-FISH.
Figure 5: Key equipment used in TAI-FISH.

Similar content being viewed by others

References

  1. Sheng, M. & Greenberg, M.E. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485 (1990).

    Article  CAS  Google Scholar 

  2. Lyford, G.L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  Google Scholar 

  3. Cole, A.J., Saffen, D.W., Baraban, J.M. & Worley, P.F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).

    Article  CAS  Google Scholar 

  4. Morgan, J.I., Cohen, D.R., Hempstead, J.L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192–197 (1987).

    Article  CAS  Google Scholar 

  5. Xiu, J. et al. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH. Nat. Neurosci. 17, 1552–1559 (2014).

    Article  CAS  Google Scholar 

  6. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  CAS  Google Scholar 

  7. Beyeler, A. et al. ivergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).

    Article  CAS  Google Scholar 

  8. Kim, J., Pignatelli, M., Xu, S., Itohara, S. & Tonegawa, S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636–1646 (2016).

    Article  CAS  Google Scholar 

  9. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  Google Scholar 

  10. Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    Article  CAS  Google Scholar 

  11. Johnson, Z.V., Revis, A.A., Burdick, M.A. & Rhodes, J.S. A similar pattern of neuronal Fos activation in 10 brain regions following exposure to reward- or aversion-associated contextual cues in mice. Physiol. Behav. 99, 412–418 (2010).

    Article  CAS  Google Scholar 

  12. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    Article  CAS  Google Scholar 

  13. Sakurai, K. et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 92, 739–753 (2016).

    Article  CAS  Google Scholar 

  14. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. & Worley, P.F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999).

    Article  CAS  Google Scholar 

  15. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. & Worley, P.F. Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 11, 579–584 (2001).

    Article  CAS  Google Scholar 

  16. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  Google Scholar 

  17. Chaudhuri, A., Nissanov, J., Larocque, S. & Rioux, L. Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression. Proc. Natl. Acad. Sci. USA 94, 2671–2675 (1997).

    Article  CAS  Google Scholar 

  18. Worley, P.F. et al. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 88, 5106–5110 (1991).

    Article  CAS  Google Scholar 

  19. Kaminska, B., Kaczmarek, L. & Chaudhuri, A. Visual stimulation regulates the expression of transcription factors and modulates the composition of AP-1 in visual cortex. J. Neurosci. 16, 3968–3978 (1996).

    Article  CAS  Google Scholar 

  20. Bobrow, M.N., Shaughnessy, K.J. & Litt, G.J. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods 137, 103–112 (1991).

    Article  CAS  Google Scholar 

  21. Bobrow, M.N., Harris, T.D., Shaughnessy, K.J. & Litt, G.J. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125, 279–285 (1989).

    Article  CAS  Google Scholar 

  22. Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F. & Guzowski, J.F. Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 22, 10067–10071 (2002).

    Article  CAS  Google Scholar 

  23. Bammer, G. Pharmacological investigations of neurotransmitter involvement in passive avoidance responding: a review and some new results. Neurosci. Biobehav. Rev. 6, 247–296 (1982).

    Article  CAS  Google Scholar 

  24. Bechara, A. & van der Kooy, D. Opposite motivational effects of endogenous opioids in brain and periphery. Nature 314, 533–534 (1985).

    Article  CAS  Google Scholar 

  25. Zangenehpour, S. & Chaudhuri, A. Neural activity profiles of the neocortex and superior colliculus after bimodal sensory stimulation. Cereb. Cortex 11, 924–935 (2001).

    Article  CAS  Google Scholar 

  26. Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  CAS  Google Scholar 

  27. Guenthner, C.J., Miyamichi, K., Yang, H.H., Heller, H.C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  CAS  Google Scholar 

  28. Xue, Y.X. et al. Selective inhibition of amygdala neuronal ensembles encoding nicotine-associated memories inhibits nicotine preference andrelapse. Biol. Psychiatry 82, 781–793 (2017).

    Article  CAS  Google Scholar 

  29. Luppi, P.H., Sakai, K., Fort, P., Salvert, D. & Jouvet, M. The nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double-labeling study with cholera toxin as a retrograde tracer. J. Compar. Neurol. 277, 1–20 (1988).

    Article  CAS  Google Scholar 

  30. Soudais, C., Skander, N. & Kremer, E.J. Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J. 18, 391–393 (2004).

    Article  CAS  Google Scholar 

  31. Norgren, R.B. Jr. & Lehman, M.N. Herpes simplex virus as a transneuronal tracer. Neurosci. Biobehav. Rev. 22, 695–708 (1998).

    Article  Google Scholar 

  32. Wickersham, I.R., Finke, S., Conzelmann, K.K. & Callaway, E.M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    Article  CAS  Google Scholar 

  33. Tervo, D.G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  Google Scholar 

  34. Cetin, A. & Callaway, E.M. Optical control of retrogradely infected neurons using drug-regulated 'TLoop' lentiviral vectors. J. Neurophysiol. 111, 2150–2159 (2014).

    Article  CAS  Google Scholar 

  35. Root, C.M., Denny, C.A., Hen, R. & Axel, R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515, 269–273 (2014).

    Article  CAS  Google Scholar 

  36. Kawashima, T. et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat. Methods 10, 889–895 (2013).

    Article  CAS  Google Scholar 

  37. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  Google Scholar 

  38. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    Article  CAS  Google Scholar 

  39. Sorensen, A.T. et al. A robust activity marking system for exploring active neuronal ensembles. eLife 5, e13918 (2016).

    Article  Google Scholar 

  40. Lee, D., Hyun, J.H., Jung, K., Hannan, P. & Kwon, H.B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).

    Article  CAS  Google Scholar 

  41. Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017).

    Article  CAS  Google Scholar 

  42. Gage, G.J., Kipke, D.R. & Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. 65, e3564 (2012).

    Google Scholar 

  43. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39, 224–229 (1989).

    Google Scholar 

Download references

Acknowledgements

We thank the Hu laboratory members for valuable discussions and advice. This study was supported by grants from the Ministry of Science and Technology of China (2011CBA00400, 2016YFA0501000), the National Natural Science Foundation of China (91432108, 31225010, and 81527901) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB02030004) to H.H., and by a grant from the National Natural Science Foundation of China (81571335) to Q.H.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and H.H. designed the experimental strategy. Q.Z., J.W. and C.F. optimized experimental procedures. Q.H., Q.Z. and C.F. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Hailan Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., He, Q., Wang, J. et al. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc 13, 118–133 (2018). https://doi.org/10.1038/nprot.2017.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing