Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

CRISPR-Cas9-based genome-wide screening of Toxoplasma gondii

Abstract

Apicomplexan parasites, such as Toxoplasma gondii, cause extensive morbidity and mortality in humans and livestock, highlighting the need for a deeper understanding of their molecular biology. Although techniques for the generation of targeted gene disruptions have long been available for apicomplexans, such methods are not readily scalable to the entire genome. We recently used CRISPR-Cas9 to disrupt all nuclear protein–coding genes in T. gondii using a pooled format. The method relies on transfection of a guide RNA library into parasites constitutively expressing Cas9. Here, we present the complete workflow of such a screen, including preparation of the guide RNA library, growth and testing of the recipient strain, generation of the mutant population, culture conditions for the screen, preparation of genomic DNA libraries, next-generation sequencing of the guide RNA loci, and analysis to detect fitness-conferring genes. This method can be deployed to study how culture conditions affect the repertoire of genes needed by parasites, which will enable studies of their metabolic needs, host specificity, and drug-resistance mechanisms. In addition, by manipulating the background in which the screen is performed, researchers will be able to investigate genetic interactions, which may help uncover redundancy or epistasis in the parasite genome. Using this method, a genome-wide screen and its analysis can be completed in 3 weeks, after 1 month of preparation to generate the library and grow the cells needed, making it a powerful tool for uncovering functionally important genes in apicomplexan parasites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the CRISPR screening procedure.
Figure 2: Assessment of Cas9 expression by immunofluorescence.
Figure 3: Assessment of Cas9 activity using an sgRNA targeting SAG1.
Figure 4: Cloning a CRISPR library into pU6-DHFR.
Figure 5: Anticipated screening results.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. World Health Organization. World Malaria Report http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ Date: (2015).

  2. Checkley, W. et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect. Dis. 15, 85–94 (2015).

    Article  PubMed  Google Scholar 

  3. Torgerson, P.R. & Mastroiacovo, P. The global burden of congenital toxoplasmosis: a systematic review. Bull. World Health Organ. 91, 501–508 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Animal and Plant Health Inspection Service of the USDA. Toxoplasma on US Sheep Operations https://www.aphis.usda.gov/animal_health/nahms/sheep/downloads/sheep11/Sheep11_is_Toxo.pdf (2014).

  5. Garrison, E. et al. A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in toxoplasma. PLoS Pathog. 8, e1003049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su, C., Howe, D.K., Dubey, J.P., Ajioka, J.W. & Sibley, L.D. Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 99, 10753–10758 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gubbels, M.-J. et al. Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii. PLoS Pathog. 4, e36 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Singh, U., Brewer, J.L. & Boothroyd, J.C. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol. Microbiol. 44, 721–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Pfefferkorn, E.R., Borotz, S.E. & Nothnagel, R.F. Toxoplasma gondii: characterization of a mutant resistant to sulfonamides. Exp. Parasitol. 74, 261–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Pfefferkorn, E.R. & Kasper, L.H. Toxoplasma gondii: genetic crosses reveal phenotypic suppression of hydroxyurea resistance by fluorodeoxyuridine resistance. Exp. Parasitol. 55, 207–218 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Dubey, J.P. & Frenkel, J.K. Cyst-induced toxoplasmosis in cats. J. Protozool. 19, 155–177 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Behnke, M.S., Dubey, J.P. & Sibley, L.D. Genetic mapping of pathogenesis determinants in Toxoplasma gondii. Annu. Rev. Microbiol. 70, 63–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Pfefferkorn, L.C. & Pfefferkorn, E.R. Toxoplasma gondii: genetic recombination between drug resistant mutants. Exp. Parasitol. 50, 305–316 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096–1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sidik, S.M. et al. A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell 166, 1423–1435.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sidik, S.M., Hackett, C.G., Tran, F., Westwood, N.J. & Lourido, S. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLoS One 9, e100450 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shen, B., Brown, K.M., Lee, T.D. & Sibley, L.D. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5, e01114–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Wagner, J.C., Platt, R.J., Goldfless, S.J., Zhang, F. & Niles, J.C. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat. Methods 11, 915–918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat. Biotechnol. 32, 819–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Vinayak, S. et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523, 477–480 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss, L.M. & Kim, K. Toxoplasma gondii (Academic Press, 2014).

  31. Donald, R.G. & Roos, D.S. Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 92, 5749–5753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pfefferkorn, E.R. & Pfefferkorn, L.C. Toxoplasma gondii: characterization of a mutant resistant to 5-fluorodeoxyuridine. Exp. Parasitol. 42, 44–55 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bushell, E. et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170, 260–272.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Pettitt, S., Krastev, D.B., Song, F., Ashworth, A. & Lord, C.J. Abstract 2743: finding determinants of PARP inhibitor sensitivity using genome-wide and focused CRISPR screens. Cancer Res. 76, 2743–2743 (2016).

    Article  CAS  Google Scholar 

  39. Steinhart, Z. et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 23, 60–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marceau, C.D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peters, J.M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Winter, J. et al. CRISPRAnalyzeR: interactive analysis, annotation and documentation of pooled CRISPR screens. Preprint at bioRxiv, https://www.biorxiv.org/content/early/2017/02/20/109967 (2017).

  51. Drewry, L.L. & Sibley, L.D. Toxoplasma actin is required for efficient host cell invasion. MBio 6, e00557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burg, J.L., Perelman, D., Kasper, L.H., Ware, P.L. & Boothroyd, J.C. Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. J. Immunol. 141, 3584–3591 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.P.J. Saeij and T. Wang for helpful advice during the development of the protocol, G. Bell and P. Thiru for assistance with bioinformatics, and E. Shortt for helpful comments during the preparation of the manuscript. Antibodies against SAG1 and ACT1 were kindly provided by L.D. Sibley (Washington University). This work was supported by the NIH Director's Early Independence Award (1DP5OD017892) and an NIH Exploratory R21 grant (1R21AI123746) to S.L.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S., D.H., and S.L. designed and performed the experiments. S.M.S. wrote the manuscript, which was edited and revised in collaboration with D.H. and S.L.

Corresponding author

Correspondence to Sebastian Lourido.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Detailed protocols outlining the procedures for cloning an sgRNA pool into the pU6-DHFR plasmid, library transformation and preparation, and confirmation of Cas9 expression. (PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidik, S., Huet, D. & Lourido, S. CRISPR-Cas9-based genome-wide screening of Toxoplasma gondii. Nat Protoc 13, 307–323 (2018). https://doi.org/10.1038/nprot.2017.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing