Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

3D molecular cartography using LC–MS facilitated by Optimus and 'ili software


Our skin, our belongings, the world surrounding us, and the environment we live in are covered with molecular traces. Detecting and characterizing these molecular traces is necessary to understand the environmental impact on human health and disease, and to decipher complex molecular interactions between humans and other species, particularly microbiota. We recently introduced 3D molecular cartography for mapping small organic molecules (including metabolites, lipids, and environmental molecules) found on various surfaces, including the human body. Here, we provide a protocol and open-source software for 3D molecular cartography. The protocol includes step-by-step procedures for sample collection and processing, liquid chromatography–mass spectrometry (LC–MS)-based metabolomics, quality control (QC), molecular identification using MS/MS, data processing, and visualization with 3D models of the sampled environment. The LC–MS method was optimized for a broad range of small organic molecules. We enable scientists to reproduce our previously obtained results, and illustrate the broad utility of our approach with molecular maps of a rosemary plant and an ATM keypad after a PIN code was entered. To promote reproducibility, we introduce cartographical snapshots: files that describe a particular map and visualization settings, and that can be shared and loaded to reproduce the visualization. The protocol enables molecular cartography to be performed in any mass spectrometry laboratory and, in principle, for any spatially mapped data. We anticipate applications, in particular, in medicine, ecology, agriculture, biotechnology, and forensics. The protocol takes 78 h for a molecular map of 100 spots, excluding the reagent setup.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Illustrations of the molecular cartography.


  1. 1

    Petras, D., Jarmusch, A.K. & Dorrestein, P.C. From single cells to our planet—recent advances in using mass spectrometry for spatially resolved metabolomics. Curr. Opin. Chem. Biol. 36, 24–31 (2017).

    CAS  Article  Google Scholar 

  2. 2

    Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl. Acad. Sci. USA 112, E2120–E2129 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Bouslimani, A. et al. Lifestyle chemistries from phones for individual profiling. Proc. Natl. Acad. Sci. USA 113, E7645–E7654 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Petras, D. et al. Mass spectrometry-based visualization of molecules associated with human habitats. Anal. Chem. 88, 10775–10784 (2016).

    CAS  Article  Google Scholar 

  5. 5

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  6. 6

    Berthold, M.R. et al. in Data Analysis, Machine Learning and Applications (eds. Preisach, C. et al.) 319–326 (Springer, 2008).

  7. 7

    Sturm, M. et al. OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics 9, 163 (2008).

    Article  Google Scholar 

  8. 8

    Kenar, E. et al. Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data. Mol. Cell. Proteomics 13, 348–359 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Pukui, M.K. & Elbert, S.H. Hawaiian Dictionary: Hawaiian-English, English-Hawaiian (University of Hawaii Press, 1986).

  10. 10

    Baker, M. 1,500 Scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Aksenov, A.A., da Silva, R., Knight, R., Lopes, N.P. & Dorrestein, P.C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 0054 (2017).

    CAS  Article  Google Scholar 

  12. 12

    Sumner, L.W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 (2016).

    Article  Google Scholar 

  15. 15

    Koal, T. & Deigner, H.-P. Challenges in mass spectrometry based targeted metabolomics. Curr. Mol. Med. 10, 216–226 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Bylda, C., Thiele, R., Kobold, U. & Volmer, D.A. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst 139, 2265–2276 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra usingCSI:FingerID. Proc. Natl. Acad. Sci. USA 112, 12580–12585 (2015).

    Article  Google Scholar 

  18. 18

    Tsugawa, H. et al. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 88, 7946–7958 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Böcker, S. & Dührkop, K. Fragmentation trees reloaded. J. Cheminform. 8, 5 (2016).

    Article  Google Scholar 

  22. 22

    Chambers, M.C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Cignoni, P. et al. Meshlab: an open-source mesh processing tool. Eurographics Italian Chapter Conference 2008, 129–136 (2008).

    Google Scholar 

  24. 24

    Luis, J.C., Pérez, R.M. & González, F.V. UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem. 101, 1211–1215 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Petersen, M. Rosmarinic acid: new aspects. Phytochem. Rev. 12, 207–227 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Munné-Bosch, S., Schwarz, K. & Alegre, L. Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121, 1047–1052 (1999).

    Article  Google Scholar 

  27. 27

    de Fine Olivarius, F. UV-radiation and urocanic acid, In: Skin Cancer and UV Radiation (eds Altmeyer P., Hoffmann K. & Stücker M.) 131–136 (Springer, 1997).

Download references


This project received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 634402 (to T.A. and I.P.), from Marie Skłodowska-Curie Action grants MSCA-IF-2016, 3D-Plant2Cells, and ID 704786 (to L.-F.N.), from US National Institutes of Health (NIH) grant 5P41GM103484-07, from National Institute of Justice Award 2015-DN-BX-K047 (to A.B.), and from NIH grant GMS10RR029121. P.C.D. further thanks the Alfred P. Sloan Foundation program on the Microbiology of the Built Environment for its support. We thank the EMBL Metabolomics Core Facility for LC–MS experiments, and Bruker Daltonics for the shared instrumentation infrastructure that enabled this work. We thank M. Rurik (OpenMS development team) and A. Fillbrunn from the KNIME development team for their advice, and V. Kovalev (EMBL) for helping with data analysis. We thank C. Kapono and D. Petras (UCSD) for helpful discussions.

Author information




I.P. and S.R. developed the software. T.A. created prototype software and coordinated computational research and software development. I.P., A.V.M., L.-F.N., L.R., and A.B. analyzed the data. A.V.M., L.-F.N., A.A.A., and P.P. performed mass spectrometry experiments. L.-F.N. and A.A.A. contributed to the rosemary study. I.P., L.R., P.P., and T.A. contributed to the ATM keypad study. I.P., A.V.M., L.-F.N., P.C.D., and T.A. wrote the manuscript; all authors contributed to the writing. P.C.D. and T.A. coordinated the research, development, and experiments.

Corresponding authors

Correspondence to Pieter C Dorrestein or Theodore Alexandrov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Results for the lifestyle chemistries from phones study.

Visualization of nystatin and unannotated metabolites across samples from the published study on lifestyle chemistries from phones3. The set of samples represent one 96-well plate from the study, containing blank samples, row A, and samples from 7 volunteers, rows B-H. See cartographical snapshots in Supplementary Data 7.1-7.4.

Supplementary Figure 2 Examples of molecular maps of unannotated molecules in tissues of Rosmarinus officinalis plant with predominant occurrence in the flowers.

These examples were chosen to highlight compounds that change in abundance in different parts of the plant as they mature. These results may lead to discovery of novel natural products. See cartographical snapshots in Supplementary Data 7.5-7.7.

Supplementary Figure 3 Examples of molecular maps of unannotated molecules in tissues of Rosmarinus officinalis plant with predominant occurrence the foliage.

See cartographical snapshots in Supplementary Data 7.8-7.10.

Supplementary Figure 4 Examples of distributions of unannotated metabolites in tissues of Rosmarinus officinalis plant with predominant occurrence the stem.

See cartographical snapshots in Supplementary Data 7.11-7.13.

Supplementary Figure 5 Examples of distribution corresponding to the pressed keys on the keypad for annotated and unannotated metabolites.

See cartographical snapshots in Supplementary Data 7.14-7.22.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, and Supplementary Methods. (PDF 1434 kb)

Supplementary Data 1

Example Optimus input files. (ZIP 97 kb)

Supplementary Data 2

Human built environment. (ZIP 21036 kb)

Supplementary Data 3

Human skin. (ZIP 4919 kb)

Supplementary Data 4

Lifestyle chemistries from phones. (ZIP 2093 kb)

Supplementary Data 5

Rosemary plant. (ZIP 826 kb)

Supplementary Data 6

ATM keypad. (ZIP 33040 kb)

Supplementary Data 7

URL links to cartographical snapshots for the considered studies. (PDF 118 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Protsyuk, I., Melnik, A., Nothias, LF. et al. 3D molecular cartography using LC–MS facilitated by Optimus and 'ili software. Nat Protoc 13, 134–154 (2018).

Download citation

Further reading

  • Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF-MS/MS

    • Peng Zhang
    • , Wei Wang
    • , Xiao-Huan Liu
    • , Zi Yang
    • , Rashmi Gaur
    • , Jing-Jing Wang
    • , Jia-Ping Ke
    •  & Guan-Hu Bao

    Food Chemistry (2021)

  • Public LC-Orbitrap Tandem Mass Spectral Library for Metabolite Identification

    • Prasad Phapale
    • , Andrew Palmer
    • , Rose Muthoni Gathungu
    • , Dipali Kale
    • , Britta Brügger
    •  & Theodore Alexandrov

    Journal of Proteome Research (2021)

  • Three-Dimensional Molecular Cartography of the Caribbean Reef-Building Coral Orbicella faveolata

    • Mark Little
    • , Emma E. George
    • , Milou G. I. Arts
    • , Jade Shivak
    • , Sean Benler
    • , Joel Huckeba
    • , Zachary A. Quinlan
    • , Vittorio Boscaro
    • , Benjamin Mueller
    • , Ana Georgina Cobián Güemes
    • , Maria Isabel Rojas
    • , Brandie White
    • , Daniel Petras
    • , Cynthia B. Silveira
    • , Andreas F. Haas
    • , Linda Wegley Kelly
    • , Mark J. A. Vermeij
    • , Robert A. Quinn
    • , Patrick J. Keeling
    • , Pieter C. Dorrestein
    • , Forest Rohwer
    •  & Ty N. F. Roach

    Frontiers in Marine Science (2021)

  • Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data

    • Alexander A. Aksenov
    • , Ivan Laponogov
    • , Zheng Zhang
    • , Sophie L. F. Doran
    • , Ilaria Belluomo
    • , Dennis Veselkov
    • , Wout Bittremieux
    • , Louis Felix Nothias
    • , Mélissa Nothias-Esposito
    • , Katherine N. Maloney
    • , Biswapriya B. Misra
    • , Alexey V. Melnik
    • , Aleksandr Smirnov
    • , Xiuxia Du
    • , Kenneth L. Jones
    • , Kathleen Dorrestein
    • , Morgan Panitchpakdi
    • , Madeleine Ernst
    • , Justin J. J. van der Hooft
    • , Mabel Gonzalez
    • , Chiara Carazzone
    • , Adolfo Amézquita
    • , Chris Callewaert
    • , James T. Morton
    • , Robert A. Quinn
    • , Amina Bouslimani
    • , Andrea Albarracín Orio
    • , Daniel Petras
    • , Andrea M. Smania
    • , Sneha P. Couvillion
    • , Meagan C. Burnet
    • , Carrie D. Nicora
    • , Erika Zink
    • , Thomas O. Metz
    • , Viatcheslav Artaev
    • , Elizabeth Humston-Fulmer
    • , Rachel Gregor
    • , Michael M. Meijler
    • , Itzhak Mizrahi
    • , Stav Eyal
    • , Brooke Anderson
    • , Rachel Dutton
    • , Raphaël Lugan
    • , Pauline Le Boulch
    • , Yann Guitton
    • , Stephanie Prevost
    • , Audrey Poirier
    • , Gaud Dervilly
    • , Bruno Le Bizec
    • , Aaron Fait
    • , Noga Sikron Persi
    • , Chao Song
    • , Kelem Gashu
    • , Roxana Coras
    • , Monica Guma
    • , Julia Manasson
    • , Jose U. Scher
    • , Dinesh Kumar Barupal
    • , Saleh Alseekh
    • , Alisdair R. Fernie
    • , Reza Mirnezami
    • , Vasilis Vasiliou
    • , Robin Schmid
    • , Roman S. Borisov
    • , Larisa N. Kulikova
    • , Rob Knight
    • , Mingxun Wang
    • , George B. Hanna
    • , Pieter C. Dorrestein
    •  & Kirill Veselkov

    Nature Biotechnology (2021)

  • Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence

    • Theodore Alexandrov

    Annual Review of Biomedical Data Science (2020)


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing