Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An experimental toolbox for characterization of mammalian collagen type I in biological specimens

Abstract

Collagen type I is the most abundant extracellular matrix protein, and collagen type I supramolecular assemblies (e.g., tissue grafts, biomaterials and cell-assembled systems) are used extensively in tissue engineering and regenerative medicine. Many studies, for convenience or economic reasons, do not accurately determine collagen type I purity, concentration, solubility and extent of cross-linking in biological specimens, frequently resulting in erroneous conclusions. In this protocol, we describe solubility; normal, reduced and delayed (interrupted) SDS-PAGE; hydroxyproline; Sircol collagen and Pierce BCA protein; denaturation temperature; ninhydrin/trinitrobenzene sulfonic acid; and collagenase assays and assess them in a diverse range of biological samples (e.g., tissue samples; purified solutions or lyophilized materials; 3D scaffolds, such as sponges and hydrogels; and cell media and layers). Collectively, the described protocols provide a comprehensive, yet fast and readily implemented, toolbox for collagen type I characterization in any biological specimen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of collagen solubility.
Figure 2: Collagen purity assessment via SDS-PAGE.
Figure 3: Collagen content quantification in cell culture and tissue samples.
Figure 4: Endothermic transition assessment of wet and dry collagen samples.
Figure 5: Quantification of free amines in collagen sponges and hydrogels through TNBSA and ninhydrin assays.
Figure 6: Collagen quantification after in vitro enzymatic degradation using MMP-8 (50 U/ml).

Similar content being viewed by others

References

  1. Hulmes, D. Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137, 2–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kielty, C. & Grant, M. The collagen family: structure, assembly, and organization in the extracellular matrix. in Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects (eds. Royce, P. & Steinmann, B.) 159–221 (Wiley, 2002).

  3. Bella, J. Collagen structure: new tricks from a very old dog. Biochem. J. 473, 1001–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Brodsky, B. & Persikov, A. Molecular structure of the collagen triple helix. Adv. Protein Chem. 70, 301–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Friess, W. Collagen – biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 45, 113–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Glowacki, J. & Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 89, 338–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Pawelec, K., Best, S. & Cameron, R. Collagen: a network for regenerative medicine. J. Mater. Chem. B 4, 6484–6496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramshaw, J. Biomedical applications of collagens. J. Biomed. Mater. Res. B 104, 665–675 (2016).

    Article  CAS  Google Scholar 

  9. Zeugolis, D., Paul, R. & Attenburrow, G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J. Biomed. Mater. Res. A 86A, 892–904 (2008).

    Article  CAS  Google Scholar 

  10. Skierka, E. & Sadowska, M. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod (Gadus morhua). Food Chem. 105, 1302–1306 (2007).

    Article  CAS  Google Scholar 

  11. Nalinanon, S., Benjakul, S., Visessanguan, W. & Kishimura, H. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chem. 104, 593–601 (2007).

    Article  CAS  Google Scholar 

  12. Lynn, A., Yannas, I. & Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B 71B, 343–354 (2004).

    Article  CAS  Google Scholar 

  13. Gelman, R., Poppke, D. & Piez, K. Collagen fibril formation in vitro. The role of the nonhelical terminal regions. J. Biol. Chem. 254, 11741–11745 (1979).

    CAS  PubMed  Google Scholar 

  14. Pontz, B., Meigel, W., Rauterberg, J. & Kühn, K. Localization of two species specific antigenic determinants on the peptide chains of calf skin collagen. Eur. J. Biochem. 16, 50–54 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Zeugolis, D. et al. Collagen solubility testing, a quality assurance step for reproducible electro-spun nano-fibre fabrication. A technical note. J. Biomater. Sci. Polym. Ed. 19, 1307–1317 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Browne, S., Zeugolis, D. & Pandit, A. Collagen: finding a solution for the source. Tissue Eng. A 19, 1491–1494 (2013).

    Article  CAS  Google Scholar 

  17. Peng, Y., Glattauer, V., Werkmeister, J. & Ramshaw, J. Evaluation for collagen products for cosmetic application. J. Cosmet. Sci. 55, 327–341 (2004).

    CAS  PubMed  Google Scholar 

  18. Picha, B., Thompson, M. & Vondriska, T. Preclinical trials: keep 'reproducibility' in context. Nature 485, 41 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Pusztai, L., Hatzis, C. & Andre, F. Reproducibility of research and preclinical validation: problems and solutions. Nat. Rev. Clin. Oncol. 10, 720–724 (2013).

    Article  PubMed  Google Scholar 

  20. Begley, C. & Ioannidis, J. Reproducibility in science: improving the standard for basic and preclinical research. Circ. Res. 116, 116–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Coller, B. & Califf, R. Traversing the valley of death: a guide to assessing prospects for translational success. Sci. Transl. Med. 1, 10cm19 (2009).

    Article  Google Scholar 

  22. Fitch, S., Harkness, M. & Harkness, R. Extraction of collagen from tissues. Nature 176, 163 (1955).

    Article  CAS  PubMed  Google Scholar 

  23. Gross, J., Highberger, J. & Schmitt, F. Extraction of collagen from connective tissue by neutral salt solutions. Proc. Natl. Acad. Sci. USA 41, 1–7 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bakerman, S. Quantitative extraction of acid-soluble human skin collagen with age. Nature 196, 375–376 (1962).

    Article  CAS  PubMed  Google Scholar 

  25. Miller, E. & Rhodes, R. Preparation and characterization of the different types of collagen. Methods Enzymol. 82, 33–64 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Rajan, N. et al. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1, 2753–2758 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  28. Sykes, B., Puddle, B., Francis, M. & Smith, R. The estimation of two collagens from human dermis by interrupted gel electrophoresis. Biochem. Biophys. Res. Commun. 72, 1472–1480 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Switzer, R., Merril, C. & Shifrin, S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 98, 231–237 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. Udenfriend, S. Formation of hydroxyproline in collagen. Science 152, 1335–1340 (1966).

    Article  CAS  PubMed  Google Scholar 

  31. Barnes, M., Constable, B. & Kodicek, E. Studies in vivo on the biosynthesis of collagen and elastin in ascorbic acid-deficient guinea pigs. Biochem. J. 113, 387–397 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blumenkrantz, N. & Asboe-Hansen, G. Biosynthesis of collagen and elastin by chick embryo skin during maturation. Arch. Dermatol. Forsch. 249, 99–104 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Faris, B. et al. The synthesis of connective tissue protein in smooth muscle cells. Biochim. Biophys. Acta 418, 93–103 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. Spencer, H., Morgulis, S. & Wilder, V. A micromethod for the determination of gelatin and a study of the collagen content of muscles from normal and dystrophic rabbits. J. Biol. Chem. 120, 257–266 (1937).

    CAS  Google Scholar 

  35. Lightfoot, L. & Coolidge, T. The distribution of collagen in the guinea pig. J. Biol. Chem. 176, 477–484 (1948).

    CAS  PubMed  Google Scholar 

  36. Lowry, O., Gilligan, D. & Katersky, E. The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J. Biol. Chem. 139, 795–804 (1941).

    CAS  Google Scholar 

  37. Neuman, R. & Logan, M. The determination of collagen and elastin in tissues. J. Biol. Chem. 186, 549–556 (1950).

    CAS  PubMed  Google Scholar 

  38. Levine, R. A nanogram method for hydroxyproline. Mikrochim. Acta 5, 797–800 (1973).

    Article  Google Scholar 

  39. Kessler, A., Rosen, H. & Levenson, S. Chromatographic fractionation of rat tail tendon collagen. Nature 184, 1640 (1959).

    Article  CAS  PubMed  Google Scholar 

  40. Kessler, A., Rosen, H. & Levenson, S. Chromatographic fractionation of acetic acid-solubilized rat tail tendon collagen. J. Biol. Chem. 235, 989–994 (1960).

    CAS  PubMed  Google Scholar 

  41. Rucklidge, G. et al. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim. Biophys. Acta 1156, 57–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Colgrave, M., Allingham, P. & Jones, A. Hydroxyproline quantification for the estimation of collagen in tissue using multiple reaction monitoring mass spectrometry. J. Chromatogr. A 1212, 150–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Böhlen, P. & Mellet, M. Automated fluorometric amino acid analysis: the determination of proline and hydroxyproline. Anal. Biochem. 94, 313–321 (1979).

    Article  PubMed  Google Scholar 

  44. Osborne, R., Longton, R. & Lamberts, B. Rapid improved amino acid analysis of collagen. Anal. Biochem. 44, 317–321 (1971).

    Article  CAS  PubMed  Google Scholar 

  45. Rydziel, S. & Canalis, E. Analysis of hydroxyproline by high performance liquid chromatography and its application to collagen turnover studies in bone cultures. Calcif. Tissue Int. 44, 421–424 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Green, G. & Reagan, K. Determination of hydroxyproline by high pressure liquid chromatography. Anal. Biochem. 201, 265–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Chan, S., Greaves, J., Da Silva, N. & Wang, S. Assaying proline hydroxylation in recombinant collagen variants by liquid chromatography-mass spectrometry. BMC Biotechnol. 12, 51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qiu, B. et al. Measurement of hydroxyproline in collagen with three different methods. Mol. Med. Rep. 10, 1157–1163 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Tredget, E. et al. Gas chromatography-mass spectrometry determination of 18O2 in 18O-labelled 4-hydroxyproline for measurement of collagen synthesis and intracellular degradation. J. Chromatogr. 612, 7–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Meyer, M. & Morgenstern, B. Characterization of gelatine and acid soluble collagen by size exclusion chromatography coupled with multi angle light scattering (SEC-MALS). Biomacromolecules 4, 1727–1732 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. LeRoy, E., Harris, E. & Sjoerdsma, A. A modified procedure for radioactive hydroxyproline assay in urine and tissues after labeled proline administration. Anal. Biochem. 17, 377–382 (1966).

    Article  CAS  PubMed  Google Scholar 

  52. Gosslau, B. & Barrach, H. Enzyme-linked immunosorbent microassay for quantification of specific antibodies to collagen type I, II, III. J. Immunol. Methods 29, 71–77 (1979).

    Article  CAS  PubMed  Google Scholar 

  53. Laurent, G. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, 1–9 (1987).

    Article  Google Scholar 

  54. Lareu, R. et al. Essential modification of the Sircol collagen assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomater. 6, 3146–3151 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Gross, J. Thermal denaturation of collagen in the dispersed and solid state. Science 143, 960–961 (1964).

    Article  CAS  PubMed  Google Scholar 

  56. Rao, S. et al. A versatile microassay for elastase using succinylated elastin. Anal. Biochem. 250, 222–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Blumenkrantz, N. Automated triple assay for proline, hydroxyproline and hydroxylysine on one single sample. Clin. Biochem. 13, 177–183 (1980).

    Article  CAS  PubMed  Google Scholar 

  58. Ward, J. et al. Amine functionalization of collagen matrices with multifunctional polyethylene glycol systems. Biomacromolecules 11, 3093–3101 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Mathrubutham, M. & Rao, S. Single microassay for matrix degrading enzymes. Front. Biosci. 6, 13–16 (2001).

    Article  Google Scholar 

  60. Kohn, R. & Rollerson, E. Aging of human collagen in relation to susceptibility to the action of collagenase. J. Gerontol. 15, 10–14 (1960).

    Article  CAS  PubMed  Google Scholar 

  61. Nagai, Y. Collagenase digestion of collagen. J. Biochem. 50, 486–492 (1961).

    Article  CAS  PubMed  Google Scholar 

  62. Zeugolis, D. & Raghunath, M. The physiological relevance of wet versus dry differential scanning calorimetry for biomaterial evaluation: a technical note. Polym. Int. 59, 1403–1407 (2010).

    Article  CAS  Google Scholar 

  63. Graham, L. & Mechanic, G. Simultaneous determination of the reducible and nonreducible cross-links of connective tissue. Analysis of mineralized and nonmineralized bone collagen. Biochemistry 28, 7889–7895 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Pearson, C., Ainsworth, L. & Chovelon, A. The determination of small amounts of collagen hydroxylysyl glycosides. Connect. Tissue Res. 6, 51–59 (1978).

    Article  CAS  PubMed  Google Scholar 

  65. Helling, A. et al. In vitro enzymatic degradation of tissue graftsand collagen biomaterials by matrix metalloproteinases: improving the collagenase assay. ACS Biomater. Sci. Eng. 3, 1922–1932 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Bentley, J. & Hanson, A. The hydroxyproline of elastin. Biochim. Biophys. Acta 175, 339–344 (1969).

    Article  CAS  PubMed  Google Scholar 

  67. Dietz, A., Lubrano, T., Covault, H. & Rubinstein, H. Correct for hydroxyproline in elastin when measuring collagen in tissues with a high elastin content. Clin. Chem. 28, 1709 (1982).

    CAS  PubMed  Google Scholar 

  68. Veis, A., Anesay, J. & Cohen, J. The long range reorganization of gelatin to the collagen structure. Arch. Biochem. Biophys. 94, 20–31 (1961).

    Article  CAS  PubMed  Google Scholar 

  69. Danielsen, C. Thermal stability of reconstituted collagen fibrils. Shrinkage characteristics upon in vitro maturation. Mech. Ageing Dev. 15, 269–278 (1981).

    Article  CAS  PubMed  Google Scholar 

  70. Hörmann, H. & Schlebusch, H. Reversible and irreversible denaturation of collagen fibers. Biochemistry 10, 932–937 (1971).

    Article  PubMed  Google Scholar 

  71. Kopp, J., Bonnet, M. & Renou, J. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation). Matrix 9, 443–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, R., Ho, H. & Sheu, M. Characterization of collagen matrices crosslinked using microbial transglutaminase. Biomaterials 26, 4229–4235 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Li, M. et al. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27, 2705–2715 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Zeugolis, D., Paul, G. & Attenburrow, G. Cross-linking of extruded collagen fibers – a biomimetic three-dimensional scaffold for tissue engineering applications. J. Biomed. Mater. Res. A 89, 895–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Satyam, A. et al. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. J. Tissue Eng. Regen. Med. 8, 233–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Buttafoco, L. et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27, 724–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Bigi, A. et al. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22, 763–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Kumar, P. et al. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J. Tissue Eng. Regen. Med. (in the press).

  79. Kumar, P. et al. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci. Rep. 5, 8729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kumar, P. et al. Accelerated development of supramolecular corneal stromal-like assemblies from corneal fibroblasts in the presence of macromolecular crowders. Tissue Eng. C Methods 21, 660–670 (2015).

    Article  CAS  Google Scholar 

  81. Satyam, A. et al. Low, but not too low, oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human dermal fibroblast culture. Acta Biomater. 44, 221–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Satyam, A. et al. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv. Mater. 26, 3024–3034 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Cigognini, D. et al. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture — a step closer to physiologically relevant in vitro organogenesis. Sci. Rep. 6, 30746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeugolis, D. et al. An in situ and in vitro investigation for the transglutaminase potential in tissue engineering. J. Biomed. Mater. Res. A 92, 1310–1320 (2010).

    CAS  PubMed  Google Scholar 

  85. English, A. et al. Substrate topography: a valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomater. 27, 3–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Collin, E. et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials 32, 1862–2870 (2011).

    Article  CAS  Google Scholar 

  87. Abbah, S. et al. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Sci. Rep. 6, 20922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsekoura, E. et al. Battling bacterial infection with hexamethylene diisocyanate cross-linked and Cefaclor-loaded collagen scaffolds. Biomed. Mater. 12, 035013 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Sanami, M. et al. The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers. J. Biomed. Mater. Res. B 104, 914–922 (2016).

    Article  CAS  Google Scholar 

  90. Delgado, L., Fuller, K. & Zeugolis, D. Collagen cross-linking: biophysical, biochemical, and biological response analysis. Tissue Eng. A 23, 1064–1077 (2017).

    Article  CAS  Google Scholar 

  91. Friess, W. & Lee, G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials 17, 2289–2294 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Orban, J. et al. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A 68, 756–762 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Miles, C. & Burjanadze, T. Thermal stability of collagen fibers in ethylene glycol. Biophys. J. 80, 1480–1486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Health Research Board, Health Research Awards Programme (grant agreement no. HRA_POR/2011/84); a Science Foundation Ireland, Career Development Award (grant agreement no. 15/CDA/3629); the Science Foundation Ireland/European Regional Development Fund (grant agreement no. 13/RC/2073); and the H2020, Marie Skłodowska-Curie Actions, Innovative Training Networks 2015 Tendon Therapy Train Project (grant agreement no. 676338). This work was also part of the Teagasc Walsh Fellowship (grant agreement no. 2014045) and the ReValueProtein Research Project (grant agreement no. 11/F/043) and was supported by the Department of Agriculture, Food and the Marine (DAFM) under the National Development Plan 2007–2013, funded by the Irish Government.

Author information

Authors and Affiliations

Authors

Contributions

H.C.-M., J.Q.C., V.G. and Z.W. contributed equally to this work and are listed in alphabetical order. H.C.-M., J.Q.C., V.G. and Z.W. designed and conducted the experiments and analyzed the data. D.I.Z. designed and supervised the study. All authors wrote the paper.

Corresponding author

Correspondence to Dimitrios I Zeugolis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 SDS-PAGE and densitometric analysis of cell-synthesized collagen.

SDS-PAGE (a) and complementary densitometric analysis (b) of Symatese bovine skin collagen type I (1.6 μg/well) standard (A); acid-extracted collagen from WS1 fibroblast cell-layers (B, C); and pepsin-extracted collagen from WS1 fibroblast cell-layers (D, E). WS1 cells were cultured for 2 days in DMEM supplemented with 0.5 % FBS, 100 μg/ml of L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate with (B, D) or without (C, E) 100 μg/ml of carrageenan (CR). The collagen was extracted from the cell layer as has been described previously78–83. N=3 for all samples.

Supplementary Figure 2 Color changes for standards and samples in the quantification of collagen content.

Hydroxyproline assay (a), Pierce™ BCA Protein assay (b) and Sircol™ Collagen assay (c).

Supplementary Figure 3 Color changes for standards and samples in the quantification of free amines.

TNBSA assay (a) and ninhydrin assay (b).

Supplementary Figure 4 Qualitative/semi-quantitative analysis of enzymatic (MMP-8 at 50 U/ml) degradation of collagen hydrogels and sponges using SDS-PAGE and densitometric analysis.

Non-crosslinked and GTA crosslinked collagen hydrogels and sponges were subjected to MMP-8 degradation for 1 h, 2 h, 4 h and 8 h. Subsequently, the supernatants were collected and loaded on gels [hydrogels (a) and sponges (c)]. Semi-quantitative analysis was conducted through densitometry [hydrogels (b) and sponges (d)]. For the non-crosslinked samples, the degradation is evidenced, whilst the GTA cross-linked samples withheld enzymatic degradation for the period of time assessed.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4. (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capella-Monsonís, H., Coentro, J., Graceffa, V. et al. An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nat Protoc 13, 507–529 (2018). https://doi.org/10.1038/nprot.2017.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.117

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing