Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces

Abstract

Over the past five years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool set capable of imaging the surfaces of biological samples ranging from single receptors to membranes and tissues. One of these approaches, force–distance curve-based AFM (FD-based AFM), uses a probing tip functionalized with a ligand to image living cells at high-resolution and simultaneously localize and characterize specific ligand–receptor binding events. Analyzing data from FD-based AFM experiments using appropriate probabilistic models allows quantification of the kinetic and thermodynamic parameters that describe the free-energy landscape of the ligand–receptor bond. We have recently developed an FD-based AFM approach to quantify the binding events of single enveloped viruses to surface receptors of living animal cells while simultaneously observing them by fluorescence microscopy. This approach has provided insights into the early stages of the interaction between a virus and a cell. Applied to a model virus, we probed the specific interaction with cells expressing viral cognate receptors and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthened the attachment of the virus to the cell. Here we describe detailed procedures for probing the specific interactions of viruses with living cells; these procedures cover tip preparation, cell sample preparation, step-by-step FD-based AFM imaging and data analysis. Experienced microscopists should be able to master the entire set of protocols in 1 month.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the protocol.
Figure 2: Mapping ΔGRabies-EnvA virus binding to MDCK–TVA cells using correlative confocal microscopy and FD-based AFM.
Figure 3: Extracting energetic and kinetic parameters of the ΔGRabies-EnvA virus binding to TVA receptors expressed by MDCK cells.

Similar content being viewed by others

References

  1. Dimitrov, D.S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith, A.E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Brandenburg, B. & Zhuang, X. Virus trafficking - learning from single-virus tracking. Nat. Rev. Microbiol. 5, 197–208 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Schnell, M.J., Mebatsion, T. & Conzelmann, K.K. Infectious rabies viruses from cloned cDNA. EMBO J. 13, 4195–4203 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghanem, A., Kern, A. & Conzelmann, K.K. Significantly improved rescue of rabies virus from cDNA plasmids. Eur. J. Cell Biol. 91, 10–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Herrmann, A. & Sieben, C. Single-virus force spectroscopy unravels molecular details of virus infection. Integr. Biol. 7, 620–632 (2015).

    Article  Google Scholar 

  8. Matrosovich, M.N. & Gambaryan, A.S. Solid-phase assays of receptor-binding specificity. Methods Mol. Biol. 865, 71–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe, T. et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature 501, 551–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, Y. et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science 342, 243–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Suenaga, E., Mizuno, H. & Penmetcha, K.K Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. Biosens. Bioelectron. 32, 195–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Papp, I. et al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6, 2900–2906 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Xiong, X. et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497, 392–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Roingeard, P. Viral detection by electron microscopy: past, present and future. Biol. Cell 100, 491–501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mercer, J. & Helenius, A. Virus entry by macropinocytosis. Nat. Cell Biol. 11, 510–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ando, T., Uchihashi, T. & Kodera, N. High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kienberger, F., Mueller, H., Pastushenko, V. & Hinterdorfer, P. Following single antibody binding to purple membranes in real time. EMBO Rep. 5, 579–583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinterdorfer, P. & Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl. Acad. Sci. USA 109, 13626–13631 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rankl, C. et al. Multiple receptors involved in human rhinovirus attachment to live cells. Proc. Natl. Acad. Sci. USA 105, 17778–17783 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang, M.I., Panorchan, P., Dobrowsky, T.M., Tseng, Y. & Wirtz, D. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J. Virol. 79, 14748–14755 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobrowsky, T.M., Zhou, Y., Sun, S.X., Siliciano, R.F. & Wirtz, D. Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution. J. Virol. 82, 7022–7033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raab, A. et al. Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 901–905 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ludwig, M., Dettmann, W. & Gaub, H. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E., Wegmann, S. & Muller, D.J. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat. Protoc. 9, 1113–1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, E., He, J. & Zhuang, X. Live cell imaging of viral entry. Curr. Opin. Virol. 3, 34–43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dufrêne, Y.F., Martinez-Martin, D., Medalsy, I., Alsteens, D. & Muller, D.J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Sieben, C. & Herrmann, A. Single virus force spectroscopy: the ties that bind. Nat. Nanotechnol. 12, 102–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Mol. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  31. Xiao, J. & Dufrêne, Y.F. Optical and force nanoscopy in microbiology. Nat. Microbiol. 1, 16186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrêne, Y.F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4 (2013).

  33. Puntheeranurak, T., Neundlinger, I., Kinne, R.K.H. & Hinterdorfer, P. Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat. Protoc. 6, 1443–1452 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Evans, E.A. & Calderwood, D.A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alsteens, D. et al. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28, 16738–16744 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Parachoniak, C.A. & Park, M. Dynamics of receptor trafficking in tumorigenicity. Trends Cell Biol. 22, 231–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Reichl, E.M., Effler, J.C. & Robinson, D.N. The stress and strain of cytokinesis. Trends Cell Biol. 15, 200–206 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, S. & Ingber, D.E. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1, E131–E138 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Janmey, P.A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763–781 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Parsons, J.T., Horwitz, A.R. & Schwartz, M.A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Matias, V. & Beveridge, T. Cryoelectron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56, 240–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Alsteens, D. et al. Atomic force microscopy-based characterization and design of biointerfaces. Nat. Rev. Mat. 2, 17008 (2017).

    Article  CAS  Google Scholar 

  46. Dufrene, Y.F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Schillers, H., Medalsy, I., Hu, S., Slade, A.L. & Shaw, J.E. PeakForce Tapping resolves individual microvilli on living cells. J. Mol. Recognit. 29, 95–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Iyer, S., Gaikwad, R., Subba-Rao, V., Woodworth, C. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Krieg, M., Dunn, A.R. & Goodman, M.B. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16, 224–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Stewart, M.P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Hanrahan, J. & Tabcharani, J. Inhibition of an outwardly rectifying anion channel by HEPES and related buffers. J. Membr. Biol. 116, 65–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Lepe-Zuniga, J.L., Zigler, J. & Gery, I. Toxicity of light-exposed Hepes media. J. Immunol. Methods 103, 145 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Otero, D.H., Wilbekin, F. & Meyer, E.M. Effects of 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (AH5183) on rat cortical synaptosome choline uptake, acetylcholine storage and release. Brain Res. 359, 208–214 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Papp, I. et al. Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. Chem. Bio. Chem. 12, 887–895 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Barde, I., Salmon, P. & Trono, D. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. 4, Unit 4 21 (2010).

    PubMed  Google Scholar 

  59. Wickersham, I.R., Sullivan, H.A. & Seung, H.S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Wildling, L. et al. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug. Chem. 22, 1239–1248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bell, G.I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  PubMed  Google Scholar 

  62. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Friddle, R.W., Noy, A. & De Yoreo, J.J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. USA 109, 13573–13578 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sulchek, T., Friddle, R.W. & Noy, A. Strength of multiple parallel biological bonds. Biophys. J. 90, 4686–4691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alsteens, D. et al. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat. Methods 12, 845–851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bustamante, C., Marko, J.F., Siggia, E.D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Narayan, S., Barnard, R.J.O. & Young, J.A.T. Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J. Virol. 77, 1977–1983 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Osakada, F. et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gomme, E.A., Faul, E.J., Flomenberg, P., McGettigan, J.P. & Schnell, M.J. Characterization of a single-cycle rabies virus-based vaccine vector. J. Virol. 84, 2820–2831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Butt, H.J. & Jaschke, M. Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6, 1–7 (1995).

    Article  Google Scholar 

  72. Burnham, N.A. et al. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003).

    Article  CAS  Google Scholar 

  73. Janovjak, H., Struckmeier, J. & Muller, D.J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur. Biophys. J. 34, 91–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Alcaraz, J. et al. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18, 716–721 (2002).

    Article  CAS  Google Scholar 

  75. Bizzarri, A.R. & Cannistraro, S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem. Soc. Rev. 39, 734–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Hane, F., Attwood, S. & Leonenko, Z. Comparison of three competing dynamic force spectroscopy models to study binding forces of amyloid-β (1–42). Soft Matter 10, 1924–1930 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Mammen, M., Choi, S.-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl. 37, 2754–2794 (1998).

    Article  PubMed  Google Scholar 

  78. Evans, E. & Williams,, P. in Physics of Bio-Molecules and cells (eds H. Flyvbjerg, F. Jülicher, P. Orms, & F. David) 145–204 (ringer, 2002).

  79. Damico, R.L., Crane, J. & Bates, P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc. Natl. Acad. Sci. USA 95, 2580–2585 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues and collaborators for sharing exciting experiments and discussions. This protocol owes much to previous work from the labs of S. Seung (MIT; ΔGRabies propagation), D. Trono (École polytechnique fédérale de Lausanne; lentivirus production) and H. Gruber (Johannes Kepler University Linz; cantilever functionalization). We thank K. Yonehara (Aarhus University) and members of the B. Roska lab (Friedrich Miescher Institute), particularly J. Jüttner and K. Balint, for their valuable help in modifying the virus production protocols to suit our needs. We thank K. Conzelmann (Ludwig-Maximilans University), S. Finke. (Friedrich-Loeffler Institute) and B. Roska for kindly providing stocks of ΔGRabies. The plasmid pAAV-EF1α-FLEX-TVA-mCherry was a gift from N. Uchida (Harvard University) and the plasmids pRRLSIN.cppt.PGK-GFP.WPRE, pMD2.G and pCMV-dR8.74 were gifts from D. Trono. We thank M. Mohr (ETH Zurich) for assistance in sub-cloning the pRRLSIN.cppt.EF1α plasmid. This work was supported by the National Foundation for Scientific Research (FNRS), the Université catholique de Louvain (Fonds Spéciaux de Recherche), the 'MOVE-IN Louvain' incoming post-doc fellowship programme, the Swiss National Science Foundation (SNF; grant no. 310030B_160225) and NCCR Molecular Systems Engineering. D.A. is a research associate at the FRS-FNRS.

Author information

Authors and Affiliations

Authors

Contributions

R.N., M.D., D.J.M. and D.A. designed and performed the experiments. R.N., M.D., M.K., A.C.D., P.R.L., D.J.M. and D.A. wrote the paper.

Corresponding author

Correspondence to David Alsteens.

Ethics declarations

Competing interests

D.J.M. and D.A. have applied for a patent for the chamber enabling AFM and optical microscopy under cell-culture conditions (EP15002176.4). The other authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newton, R., Delguste, M., Koehler, M. et al. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Nat Protoc 12, 2275–2292 (2017). https://doi.org/10.1038/nprot.2017.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing