Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment

Abstract

2D surfaces offer simple analysis of cells in culture, yet these often yield different cell morphologies and responses from those observed in vivo. Considerable effort has therefore been expended on the generation of more tissue-like environments for the study of cell behavior in vitro. Purified matrix proteins provide a 3D scaffold that better mimics the in vivo situation; however, these are far removed from the complex tissue composition seen in vivo. Cell-derived matrices (CDMs) offer a more physiologically relevant alternative for studying in vivo-like cell behavior in vitro. In the protocol described here, fibroblasts cultured on gelatin-coated surfaces are maintained in the presence of ascorbic acid to strengthen matrix deposition over 1–3 weeks. The resulting fibrillar CDMs are denuded of cells, and other cells are subsequently cultured on them, after which their behavior is monitored. We also demonstrate how to use CDMs as an in vivo-relevant reductionist model for studying tumor-stroma-induced changes in carcinoma cell proliferation and migration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cell morphology on different in vitro matrices and in vivo.
Figure 2: Workflow diagram.
Figure 3: Common problems associated with CDM production.
Figure 4: Immunofluorescence imaging of collagen I and fibronectin in CDMs.
Figure 5: Comparison of HeLa-H2B-GFP cell proliferation on CDMs and on plastic.
Figure 6: Analysis of cell migration on CDMs.

References

  1. 1

    Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Kai, F., Laklai, H. & Weaver, V.M. Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 26, 486–497 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Nguyen-Ngoc, K.V. & Ewald, A.J. Mammary ductal elongation and myoepithelial migration are regulated by the composition of the extracellular matrix. J. Microsc. 251, 212–223 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Nguyen-Ngoc, K. et al. 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol. Biol. 1189, 135–162 (2015).

    Article  Google Scholar 

  6. 6

    Caswell, P.T. et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Caswell, P.T. et al. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteomics 11, M111.014647 (2012).

    Article  Google Scholar 

  9. 9

    Naba, A. et al. The extracellular matrix: tools and insights for the 'omics' era. Matrix Biol. 49, 10–24 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Franco-Barraza, J. et al. Matrix-regulated integrin αvβ5 maintains α5β1-dependent desmoplastic traits prognostic of neoplastic recurrence. Elife 6, e20600 (2017).

    Article  Google Scholar 

  11. 11

    Kaukonen, R. et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Byron, A. et al. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J. Am. Soc. Nephrol. 25, 953–966 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Peuhu, E. et al. SHARPIN regulates collagen architecture and ductal outgrowth in the developing mouse mammary gland. EMBO J. 36, 165–182 (2017).

    CAS  Article  Google Scholar 

  14. 14

    Rashid, S.T. et al. Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. J. Proteome Res. 11, 4052–4064 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Soteriou, D. et al. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J. Biol. Chem. 288, 18716–18731 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Amatangelo, M.D., Bassi, D.E., Klein-Szanto, A.J.P. & Cukierman, E. Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am. J. Pathol. 167, 475–488 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Tello, M. et al. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 94, 85–100 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Ahlfors, J.W. & Billiar, K.L. Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix. Biomaterials 28, 2183–2191 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Soucy, P.A., Werbin, J., Heinz, W., Hoh, J.H. & Romer, L.H. Microelastic properties of lung cell-derived extracellular matrix. Acta Biomater. 7, 96–105 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Jacquemet, G. et al. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat. Commun. 7, 13297 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Kaukonen, R. et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016).

    CAS  Article  Google Scholar 

  22. 22

    Jacquemet, G. et al. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J. Cell Biol. 202, 917–935 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Jacquemet, G. et al. Rac1 is deactivated at integrin activation sites through an IQGAP1-filamin-A-RacGAP1 pathway. J. Cell. Sci. 126, 4121–4135 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Jacquemet, G. et al. FiloQuant reveals increased filopodia density during breast cancer progression. J. Cell Biol. pii: jcb.201704045 (2017).

  25. 25

    Yamada, K.M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Cukierman, E., Pankov, R., Stevens, D.R. & Yamada, K.M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Bass, M.D. et al. Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J. Cell Biol. 177, 527–538 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Dozynkiewicz, M.A. et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Quiros, R.M. et al. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol. Oncol. 110, 99–109 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Grinnell, F., Fukamizu, H., Pawelek, P. & Nakagawa, S. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid. Exp. Cell Res. 181, 483–491 (1989).

    CAS  Article  Google Scholar 

  31. 31

    Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Eyre, D.R., Paz, M.A. & Gallop, P.M. Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53, 717–748 (1984).

    CAS  Article  Google Scholar 

  33. 33

    Lelièvre, S., Weaver, V.M. & Bissell, M.J. Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: a model of gene regulation. Recent Prog. Horm. Res. 51, 417–432 (1996).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Doyle, A.D., Carvajal, N., Jin, A., Matsumoto, K. & Yamada, K.M. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6, 8720 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Petrie, R.J., Koo, H. & Yamada, K.M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    CAS  Article  Google Scholar 

  36. 36

    White, D.P., Caswell, P.T. & Norman, J.C. alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol. 177, 515–525 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Franco-Barraza, J., Beacham, D.A., Amatangelo, M.D. & Cukierman, E. Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr. Protoc. Cell Biol. 71, 10.9.34 (2016).

    Google Scholar 

  38. 38

    Gaudet, I.D. & Shreiber, D.I. Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases 7, 25 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Conklin, M.W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  Google Scholar 

  40. 40

    Pickup, M.W., Mouw, J.K. & Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Yun, S. et al. Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nat. Cell Biol. 18, 1043–1053 (2016).

    CAS  Article  Google Scholar 

  42. 42

    Saneyasu, T., Akhtar, R. & Sakai, T. Molecular cues guiding matrix stiffness in liver fibrosis. Biomed. Res. Int. 2016, 2646212 (2016).

    Article  Google Scholar 

  43. 43

    Boudaoud, A. et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457–463 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Lee, H. et al. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11, 245 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Kartasalo, K. et al. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics 16, 344 (2015).

    Article  Google Scholar 

  46. 46

    Chaudhary, R. et al. Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth. Bone 92, 201–213 (2016).

    Article  Google Scholar 

  47. 47

    Wells, R.G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Butcher, D.T., Alliston, T. & Weaver, V.M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Bomo, J. et al. Increasing 3D matrix rigidity strengthens proliferation and spheroid development of human liver cells in a constant growth factor environment. J. Cell Biochem. 117, 708–720 (2016).

    CAS  Article  Google Scholar 

  50. 50

    Yeh, Y. et al. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS ONE 7, e46889 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Muller, P.A.J. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  Google Scholar 

  52. 52

    Paul, N.R. et al. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J. Cell Biol. 210, 1013–1031 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Rainero, E. et al. Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration. J. Cell Biol. 196, 277–295 (2012).

    CAS  Article  Google Scholar 

  54. 54

    Petrie, R.J., Gavara, N., Chadwick, R.S. & Yamada, K.M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439–455 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Morgan, M.R. et al. Syndecan-4 phosphorylation is a control point for integrin recycling. Dev. Cell 24, 472–485 (2013).

    CAS  Article  Google Scholar 

  56. 56

    Fitzpatrick, L.E. & McDevitt, T.C. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater. Sci. 3, 12–24 (2015).

    CAS  Article  Google Scholar 

  57. 57

    Kiss, A., Horvath, P., Rothballer, A., Kutay, U. & Csucs, G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE 9, e93431 (2014).

    Article  Google Scholar 

  58. 58

    Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M. Georgiadou (University of Turku Centre for Biotechnology) is acknowledged for providing the bright-field images of CDMs presented in Figure 3. J. Norman (Beatson Institute for Cancer Research) is acknowledged for providing the TIFs. P. Caswell (University of Manchester) and J.F. Marshall (Barts Cancer Institute) are acknowledged for the A2780 and the MCF10 DCIS.COM cell lines, respectively. The Turku Centre for Biotechnology Imaging Core facility is acknowledged for help with the imaging. We gratefully acknowledge the following funding sources: Academy of Finland, European Research Council Consolidator Grant (no. 615258), the Sigrid Juselius Foundation and the Finnish Cancer Organization to J.I. R.K. was funded by the University of Turku/TUBS TuDMM doctoral program and G.J. was funded by an EMBO LTF.

Author information

Affiliations

Authors

Contributions

J.I., G.J., H.H. and R.K. organized and wrote the manuscript. H.H. provided the illustrated workflow and edited the manuscript. G.J. and R.K. produced the data. R.K. produced the video-guided material with help from G.J and J.I.

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Workflow

This video outlines the entire workflow used to generate CDMs. (MP4 2139 kb)

Coverslip preparation

This video shows how to prepare gelatin-coated coverslips (Steps 1–6 of the protocol). (MP4 6555 kb)

Plating of fibroblasts

This video shows how to plate fibroblasts for CDM production (Steps 7–10 of the protocol). (MP4 21761 kb)

Extraction of CDMs.

This video shows how to extract CDMs (Steps 11–17 of the protocol). (MP4 21408 kb)

Staining of CDMs.

This video shows how to stain CDMs using immunofluorescence (Step 18A of the protocol). (MP4 8054 kb)

Analysis of cell proliferation.

This video shows how to analyze cell proliferation on CDMs using an IncuCyte Zoom live-cell incubator (Step 18B of the protocol). (MP4 7943 kb)

Quantification of cell migration.

This video shows how to quantify cell migration on CDMs using ImageJ and the Chemotaxis tool (Step 18C of the protocol). (MP4 4202 kb)

Migration of an ovarian carcinoma cell.

This video shows an ovarian carcinoma cell transiently expressing Lifeact RFP (to visualize the actin cytoskeleton) migrating on TIF CDMs (labeled in green using Alexa Fluor 488 recombinant fibronectin). Images were acquired on a spinning-disk microscope using a 63× objective. (MP4 4849 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaukonen, R., Jacquemet, G., Hamidi, H. et al. Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat Protoc 12, 2376–2390 (2017). https://doi.org/10.1038/nprot.2017.107

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing