Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics

Abstract

Biochemical systems in which multiple components take part in a given reaction are of increasing interest. Because the interactions between these different components are complex and difficult to predict from basic reaction kinetics, it is important to test for the effect of variations in the concentration for each reagent in a combinatorial manner. For example, in PCR, an increase in the concentration of primers initially increases template amplification, but large amounts of primers result in primer–dimer by-products that inhibit the amplification of the template. Manual titration of biochemical mixtures rapidly becomes costly and laborious, forcing scientists to settle for suboptimal concentrations. Here we present a droplet-based microfluidics platform for mapping of the concentration space of up to three reaction components followed by detection with a fluorescent readout. The concentration of each reaction component is read through its internal standard (barcode), which is fluorescent but chemically orthogonal. We describe in detail the workflow, which comprises the following: (i) production of the microfluidics chips, (ii) preparation of the biochemical mixes, (iii) their mixing and compartmentalization into water-in-oil emulsion droplets via microfluidics, (iv) incubation and imaging of the fluorescent barcode and reporter signals by fluorescence microscopy and (v) image processing and data analysis. We also provide recommendations for choosing the appropriate fluorescent markers, programming the pressure profiles and analyzing the generated data. Overall, this platform allows a researcher with a few weeks of training to acquire 10,000 data points (in a 1D, 2D or 3D concentration space) over the course of a day from as little as 100–1,000 μl of reaction mix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the droplet-based titration platform.
Figure 2: The layout of the microfluidic chip.
Figure 3: Scripting of the pressure profiles for a 2D experiment.
Figure 4: Fabrication outline for the droplet chamber.
Figure 5: Examples of artifacts encountered with the droplet chambers.
Figure 6: Various imaging and processing artifacts.

Similar content being viewed by others

References

  1. Burlingham, B.T. & Widlanski, T.S. An intuitive look at the relationship of Ki and IC50: a more general use for the Dixon plot. J. Chem. Educ. 80, 214–218 (2003).

    Article  CAS  Google Scholar 

  2. Zimmer, A., Katzir, I., Dekel, E., Mayo, A.E. & Alon, U. Prediction of multidimensional drug dose responses based on measurements of drug pairs. Proc. Natl. Acad. Sci. USA 113, 10442–10447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elnifro, E.M., Ashshi, A.M., Cooper, R.J. & Klapper, P.E. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559–570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Bustin, S.A. Why the need for qPCR publication guidelines? The case for MIQE. Methods 50, 217–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Klingenberg, M. The original micropipette. Scientist 20, 92–92 (2006).

    Google Scholar 

  8. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Thorsen, T., Maerkl, S.J. & Quake, S.R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Sackmann, E.K., Fulton, A.L. & Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Vogelstein, B. & Kinzler, K.W. Digital PCR. Proc. Natl. Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365 (2005).

    CAS  PubMed  Google Scholar 

  13. Ottesen, E.A., Hong, J.W., Quake, S.R. & Leadbetter, J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S.H. et al. Large-scale femtoliter droplet array for digital counting of single biomolecules. Lab Chip 12, 4986–4991 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Witters, D. et al. Digital biology and chemistry. Lab Chip 14, 3225–3232 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Petersen, K.E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

    Article  CAS  Google Scholar 

  18. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A.P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Leman, M., Abouakil, F., Griffiths, A.D. & Tabeling, P. Droplet-based microfluidics at the femtolitre scale. Lab Chip 15, 753–765 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Shim, J.-U. et al. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. ACS Nano 7, 5955–5964 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bringer, M.R., Gerdts, C.J., Song, H., Tice, J.D. & Ismagilov, R.F. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos. Trans. A Math. Phys. Eng. Sci. 362, 1087–1104 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Agresti, J.J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 107, 4004–4009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abate, A.R., Hung, T., Mary, P., Agresti, J.J. & Weitz, D.A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl. Acad. Sci. USA 107, 19163–19166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Hasatani, K. et al. High-throughput and long-term observation of compartmentalized biochemical oscillators. Chem. Commun. 49, 8090–8092 (2013).

    Article  CAS  Google Scholar 

  27. Bai, Y. et al. A double droplet trap system for studying mass transport across a droplet-droplet interface. Lab Chip 10, 1281–1285 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Garstecki, P., Fuerstman, M.J., Stone, H.A. & Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kaneda, S. et al. Pneumatic handling of droplets on-demand on a microfluidic device for seamless processing of reaction and electrophoretic separation. Electrophoresis 31, 3719–3726 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, J.H. et al. Droplet microfluidics for producing functional microparticles. Langmuir 30, 1473–1488 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Caen, O. et al. Digital PCR compartmentalization II. Contribution for the quantitative detection of circulating tumor DNA. Med. Sci. 31, 180–186 (2015).

    Google Scholar 

  32. Yamashita, H. et al. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device. J. Biosci. Bioeng. 119, 492–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Anna, S.L. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285–309 (2016).

    Article  Google Scholar 

  34. Baroud, C.N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Nakano, M. et al. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102, 117–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. Nat. Methods 3, 545–550 (2006).

    CAS  PubMed  Google Scholar 

  37. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

    CAS  PubMed  Google Scholar 

  38. Thorsen, T., Roberts, R.W., Arnold, F.H. & Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Song, H., Chen, D.L. & Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

  40. Ward, T., Faivre, M., Abkarian, M. & Stone, H.A. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26, 3716–3724 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Taly, V., Kelly, B.T. & Griffiths, A.D. Droplets as microreactors for high-throughput biology. ChemBioChem 8, 263–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Mazutis, L. et al. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9, 2902–2908 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Pompano, R.R., Liu, W.S., Du, W.B. & Ismagilov, R.F. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu. Rev. Anal. Chem. 4, 59–81 (2011).

    Article  CAS  Google Scholar 

  44. Taly, V. et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 59, 1722–1731 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Lim, J. et al. Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays. Biomicrofluidics 9 (2015).

  46. Sugiura, H. et al. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system. Nat. Commun. 7, 10212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsumura, S. et al. Transient compartmentalization of RNA replicators prevents extinction due to parasites. Science 354, 1293–1296 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Eisenstein, M. Startups use short-read data to expand long-read sequencing market. Nat. Biotechnol. 33, 433–435 (2015).

    CAS  PubMed  Google Scholar 

  49. Baker, M. Digital PCR hits its stride. Nat. Methods 9, 541–544 (2012).

    CAS  Google Scholar 

  50. Miller, O.J. et al. High-resolution dose-response screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. USA 109, 378–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Zheng, B., Roach, L.S. & Ismagilov, R.F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125, 11170–11171 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Genot, A.J. et al. High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 8, 760–767 (2016).

    CAS  PubMed  Google Scholar 

  53. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Ness, J., Van Ness, L.K. & Galas, D.J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. USA 100, 4504–4509 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson, K.A. & Goody, R.S. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50, 8264–8269 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Borch, J. & Roepstorff, P. Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry. Anal. Chem. 76, 5243–5248 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    CAS  PubMed  Google Scholar 

  58. Shults, M.D., Janes, K.A., Lauffenburger, D.A. & Imperiali, B. A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat. Methods 2, 277–283 (2005).

    CAS  PubMed  Google Scholar 

  59. Geladopoulos, T.P., Sotiroudis, T.G. & Evangelopoulos, A.E. A malachite green colorimetric assay for protein phosphatase-activity. Anal. Biochem. 192, 112–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Pelletier, J., Bellot, G., Pouysségur, J. & Mazure, N.M. Biochemical titration of glycogen in vitro. J. Vis. Exp. 2013, e50465 (2013).

    Google Scholar 

  61. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  Google Scholar 

  62. Shendure, J. & Ji, H.L. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    CAS  PubMed  Google Scholar 

  63. Gielen, F. et al. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 113, E7383–E7389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gruner, P. et al. Stabilisers for water-in-fluorinated-oil dispersions: key properties for microfluidic applications. Curr. Opin. Colloid Interface Sci. 20, 183–191 (2015).

    Article  CAS  Google Scholar 

  65. Gu, S.Q. et al. Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method. Anal. Chim. Acta 796, 68–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Gerver, R.E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Cai, L.F., Zhu, Y., Du, G.S. & Fang, Q. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal. Chem. 84, 446–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Theberge, A.B. et al. Microfluidic platform for combinatorial synthesis in picolitre droplets. Lab Chip 12, 1320–1326 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Niu, X., Gielen, F., Edel, J.B. & deMello, A.J. A microdroplet dilutor for high-throughput screening. Nat. Chem. 3, 437–442 (2011).

    CAS  PubMed  Google Scholar 

  70. Sun, M., Bithi, S.S. & Vanapalli, S.A. Microfluidic static droplet arrays with tuneable gradients in material composition. Lab Chip 11, 3949–3952 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Bui, M.P.N. et al. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal. Chem. 83, 1603–1608 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Du, W.B., Sun, M., Gu, S.Q., Zhu, Y. & Fang, Q. Automated microfluidic screening assay platform based on drop lab. Anal. Chem. 82, 9941–9947 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Du, W.B., Li, L., Nichols, K.P. & Ismagilov, R.F. SlipChip. Lab Chip 9, 2286–2292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Damean, N., Olguin, L.F., Hollfelder, F., Abell, C. & Huck, W.T.S. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 9, 1707–1713 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Lorenz, R.M. et al. Simultaneous generation of multiple aqueous droplets in a microfluidic device. Anal. Chim. Acta 630, 124–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song, H. & Ismagilov, R.F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tabeling, P. Introduction to Microfluidics (Oxford University Press, 2005).

  78. Kijani, S. et al. Filter-dense multicolor microscopy. PLoS One 10 (2015).

  79. Paik, P., Pamula, V.K. & Fair, R.B. Rapid droplet mixers for digital microfluidic systems. Lab Chip 3, 253–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Niu, X., Gulati, S., Edel, J.B. & deMello, A.J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837–1841 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Courtois, F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal. Chem. 81, 3008–3016 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Skhiri, Y. et al. Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8, 10618–10627 (2012).

    Article  CAS  Google Scholar 

  83. Gruner, P. et al. Controlling molecular transport in minimal emulsions. Nat. Commun. 7, 10392 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hofmann, T.W., Anselmann, S.H., Janiesch, J.W., Rademacher, A. & Bohm, C.H.J. Applying microdroplets as sensors for label-free detection of chemical reactions. Lab Chip 12, 916–922 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Li, X.B., Li, F.C., Kinoshita, H., Oishi, M. & Oshima, M. Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel. Microfluid. Nanofluid. 18, 1007–1021 (2015).

    Article  CAS  Google Scholar 

  86. Qin, D., Xia, Y.N. & Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaneda, S. et al. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices. Anal. Sci. 28, 39–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Baret, J.C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422–433 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8, 1632–1639 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Zhong, Q. et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11, 2167–2174 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Baret, J.C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Schmitz, C.H.J., Rowat, A.C., Koster, S. & Weitz, D.A. Dropspots: a picoliter array in a microfluidic device. Lab Chip 9, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Cully, A., Clune, J., Tarapore, D. & Mouret, J.B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002).

    Article  Google Scholar 

  98. Kask, P., Palo, K., Hinnah, C. & Pommerencke, T. Flat field correction for high-throughput imaging of fluorescent samples. J. Microsc. 263, 328–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Tanaka, H. et al. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR. Anal. Chem. 87, 4134–4143 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Pandit, K.R., Rueger, P.E., Calabrese, R.V., Raghavan, S.R. & White, I.M. Assessment of surfactants for efficient droplet PCR in mineral oil using the pendant drop technique. Colloids Surf. B Biointerfaces 126, 489–495 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Nishikawa and K. Montagne for kindly proofreading the manuscript. Y.R. acknowledges support from the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research on Innovative Areas 'Synthetic Biology for Comprehension of Biomolecular Networks' (project number 23119001). A.J.G. acknowledges support from the ANR (ANR-13-PDOC-0001) and the JSPS (postdoctoral fellowship). J.-F.B. was supported by a PhD fellowship from Region Alsace. N.B. acknowledges support from the PHC Sakura program (project number 34171WG). A.B. and N.A.-K. were supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the method. A.B., S.O., R.S., E.H. and A.J.G. performed the experiments. N.B., N.A.-K., Y.R. and A.J.G. analyzed the data. J.-F.B. and V.T. synthesized the surfactant. T.F. and V.T. provided support with the microfluidic platform. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Anthony J Genot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data 1

An SU-8 master mold of the chip array (ZIP file). (ZIP 507 kb)

Supplementary Data 2

Pressure scripts (ZIP file). (ZIP 70 kb)

Supplementary Data 3

MATLAB script (TXT file). (TXT 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouche, A., Okumura, S., Sieskind, R. et al. Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics. Nat Protoc 12, 1912–1932 (2017). https://doi.org/10.1038/nprot.2017.092

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.092

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing