Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity

Abstract

Many biologically and chemically based approaches have been developed to design highly active and selective protease substrates and probes. It is, however, difficult to find substrate sequences that are truly selective for any given protease, as different proteases can demonstrate a great deal of overlap in substrate specificities. In some cases, better enzyme selectivity can be achieved using peptide libraries containing unnatural amino acids such as the hybrid combinatorial substrate library (HyCoSuL), which uses both natural and unnatural amino acids. HyCoSuL is a combinatorial library of tetrapeptides containing amino acid mixtures at the P4–P2 positions, a fixed amino acid at the P1 position, and an ACC (7-amino-4-carbamoylmethylcoumarin) fluorescent tag occupying the P1′ position. Once the peptide is recognized and cleaved by a protease, the ACC is released and produces a readable fluorescence signal. Here, we describe the synthesis and screening of HyCoSuL for human caspases and legumain. We also discuss possible modifications and adaptations of this approach that make it a useful tool for developing highly active and selective reagents for a wide variety of proteolytic enzymes. The protocol can be divided into three major parts: (i) solid-phase synthesis of the fluorescence-labeled HyCoSuL, (ii) screening of protease P4–P2 preferences, and (iii) synthesis of the optimized activity probes equipped with an AOMK (acyloxymethyl ketone) reactive group and a biotin label for easy detection. Beginning with the library design, the entire protocol can be completed in 4–8 weeks (HyCoSuL synthesis: 3–5 weeks; HyCoSuL screening per enzyme: 4–8 d; and activity-based probe synthesis: 1–2 weeks).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the hybrid combinatorial substrate library (HyCoSuL) method.
Figure 2: Unnatural amino acids.
Figure 3: Diagram of a 96-well plate for placement of HyCoSuL substrates.
Figure 4: Determination of the caspase-3 S4 pocket preferences.
Figure 5: The selection process for protease-specific substrates and probes.
Figure 6: Unnatural amino acids can be used for various types of peptide substrate libraries.
Figure 7: The simplified algorithm for the synthesis of combinatorial or defined substrate libraries with unnatural amino acids.
Figure 8: General scheme of the building blocks synthesis of legumain-selective activity-based probe.

Similar content being viewed by others

References

  1. Drag, M. & Salvesen, G.S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9, 690–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Rawlings, N.D., Barrett, A.J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Otin, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Grootjans, S. et al. A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nat. Protoc. 11, 1444–1454 (2016).

    Article  PubMed  Google Scholar 

  7. Poreba, M. & Drag, M. Current strategies for probing substrate specificity of proteases. Curr. Med. Chem. 17, 3968–3995 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kasperkiewicz, P., Poreba, M., Groborz, K. & Drag, M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J. 284, 1518–1539 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diamond, S.L. Methods for mapping protease specificity. Curr. Opin. Chem. Biol. 11, 46–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent phage display. Science 260, 1113–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Harris, J.L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA 97, 7754–7759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McStay, G.P., Salvesen, G.S. & Green, D.R. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15, 322–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Choe, Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Drag, M. et al. Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem. J. 415, 367–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Withana, N.P. et al. Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes. Nat. Protoc. 11, 184–191 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Oresic Bender, K. et al. Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization. J. Am. Chem. Soc. 137, 4771–4777 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Kasperkiewicz, P. et al. Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proc. Natl. Acad. Sci. USA 111, 2518–2523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasperkiewicz, P., Gajda, A.D. & Drag, M. Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity. Biol. Chem. 393, 843–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Rut, W. et al. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids. Biol. Chem. 396, 329–337 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Rano, T.A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem. Biol. 4, 149–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Poreba, M. et al. Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ. 21, 1482–1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostresh, J.M., Winkle, J.H., Hamashin, V.T. & Houghten, R.A. Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers 34, 1681–1689 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Denault, J.B. & Salvesen, G.S. Caspases: keys in the ignition of cell death. Chem. Rev. 102, 4489–4500 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Aglietti, R.A. & Dueber, E.C. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 38, 261–271 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Dall, E. & Brandstetter, H. Structure and function of legumain in health and disease. Biochimie 122, 126–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Poreba, M. et al. Counter selection substrate library strategy for developing specific protease substrates and probes. Cell Chem. Biol. 23, 1023–1035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rut, W. et al. Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Res. 139, 88–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Kasperkiewicz, P. et al. Design of a selective substrate and activity based probe for human neutrophil serine protease 4. PLoS One 10, e0132818 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lentz, C.S. et al. Design of selective substrates and activity-based probes for hydrolase important for pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect. Dis. 2, 807–815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schneider, E.L. & Craik, C.S. Positional scanning synthetic combinatorial libraries for substrate profiling. Methods Mol. Biol. 539, 59–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lechtenberg, B.C., Kasperkiewicz, P., Robinson, H., Drag, M. & Riedl, S.J. The elastase-PK101 structure: mechanism of an ultrasensitive activity-based probe revealed. ACS Chem. Biol. 10, 945–951 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Legowska, M. et al. Ultrasensitive internally quenched substrates of human cathepsin L. Anal. Biochem. 466, 30–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Gosalia, D.N., Denney, W.S., Salisbury, C.M., Ellman, J.A. & Diamond, S.L. Functional phenotyping of human plasma using a 361-fluorogenic substrate biosensing microarray. Biotechnol. Bioeng. 94, 1099–1110 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Vizovisek, M., Vidmar, R., Fonovic, M. & Turk, B. Current trends and challenges in proteomic identification of protease substrates. Biochimie 122, 77–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Schilling, O. & Overall, C.M. Proteomic discovery of protease substrates. Curr. Opin. Chem. Biol. 11, 36–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Staes, A. et al. Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protoc. 6, 1130–1141 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Korkmaz, B., Horwitz, M.S., Jenne, D.E. & Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 62, 726–759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janicke, R.U., Sohn, D., Totzke, G. & Schulze-Osthoff, K. Caspase-10 in mouse or not? Science 312, 1874 (2006).

    Article  PubMed  Google Scholar 

  42. Berger, A.B., Sexton, K.B. & Bogyo, M. Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res. 16, 961–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Pereira, N.A. & Song, Z. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem. Biophys. Res. Commun. 377, 873–877 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Drag, M., Bogyo, M., Ellman, J.A. & Salvesen, G.S. Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors. J. Biol. Chem. 285, 3310–3318 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Byzia, A., Szeffler, A., Kalinowski, L. & Drag, M. Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library. Biochimie 122, 31–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Poreba, M. et al. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids 46, 931–943 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeiler, E. et al. Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad. Proc. Natl. Acad. Sci. USA 110, 11302–11307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gersch, M. et al. Barrel-shaped ClpP proteases display attenuated cleavage specificities. ACS Chem. Biol. 11, 389–399 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Maly, D.J. et al. Expedient solid-phase synthesis of fluorogenic protease substrates using the 7-amino-4-carbamoylmethylcoumarin (ACC) fluorophore. J. Org. Chem. 67, 910–915 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Patterson, A.W., Wood, W.J. & Ellman, J.A. Substrate activity screening (SAS): a general procedure for the preparation and screening of a fragment-based non-peptidic protease substrate library for inhibitor discovery. Nat. Protoc. 2, 424–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, Y. & Freeland, S. On the evolution of the standard amino-acid alphabet. Genome Biol. 7, 102 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Isidro-Llobet, A., Alvarez, M. & Albericio, F. Amino acid-protecting groups. Chem. Rev. 109, 2455–2504 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ng, N.M., Pike, R.N. & Boyd, S.E. Subsite cooperativity in protease specificity. Biol. Chem. 390, 401–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Winiarski, L., Oleksyszyn, J. & Sienczyk, M. Human neutrophil elastase phosphonic inhibitors with improved potency of action. J. Med. Chem. 55, 6541–6553 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Edgington, L.E. et al. An optimized activity-based probe for the study of caspase-6 activation. Chem. Biol. 19, 340–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanman, L.E. & Bogyo, M. Activity-based profiling of proteases. Annu. Rev. Biochem. 83, 249–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Stennicke, H.R. & Salvesen, G.S. Caspases: preparation and characterization. Methods 17, 313–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Wachmann, K. et al. Activation and specificity of human caspase-10. Biochemistry 49, 8307–8315 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Mathieu, M.A. et al. Substrate specificity of schistosome versus human legumain determined by P1-P3 peptide libraries. Mol. Biochem. Parasitol. 121, 99–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Boatright, K.M., Deis, C., Denault, J.B., Sutherlin, D.P. & Salvesen, G.S. Activation of caspases-8 and -10 by FLIP(L). Biochem. J. 382, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boatright, K.M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Sainlos, M. & Imperiali, B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nat. Protoc. 2, 3210–3218 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Eckelman, B.P., Drag, M., Snipas, S.J. & Salvesen, G.S. The mechanism of peptide-binding specificity of IAP BIR domains. Cell Death Differ. 15, 920–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Poreba, M., Szalek, A., Kasperkiewicz, P. & Drag, M. Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity. Methods Mol. Biol. 1133, 41–59 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish Ministry of Science and Higher Education (grant Iuventus Plus IP2012 040172 to M.P.), the Polish National Science Centre (grant 2014/14/M/ST5/00619 to M.D.), and the US National Institutes of Health (grant R01GM099040 to G.S.S.). This project has received founding from the European Union`s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 661187. The Drag laboratory is supported by the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Contributions

M.P., G.S.S. and M.D. developed the protocol, designed the research, interpreted the data and wrote the protocol. M.P. carried out the experiments in the protocol.

Corresponding authors

Correspondence to Marcin Poreba or Marcin Drag.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 HyCoSuL synthesis and quality control exemplified with the P2 sublibrary.

P2 HyCoSuL sublibrary contains amino acids mixtures at P3 and P4 positions. To test whether the coupling of isokinetic mixture provided the equal distribution of amino acids in P3 (and P4) position an Edman degradation can be utilized. After coupling and de-protection of P3 position (steps 38-44) several beads are subjected for the analysis in order to determine the molar distribution of amino acids at the N-terminal end of a peptide. The same procedure can be applied to test the equimolar coupling of amino acids mixture to the P4 position.

Supplementary Figure 2 HR-MS and RP-HPLC analysis of ACC-labeled legumain substrate containing unnatural amino acids.

Substrate was synthesized according to standard solid phase Fmoc/Boc strategy, and purified using reverse phase high performance (pressure) liquid chromatography (RP-HPLC) Waters system with semi-preparative C18 column. The purity of the substrate was confirmed using the analytical HPLC with C18 analytical column (UV detector, 220nm). The molecular mass of the substrate was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Supplementary Figure 3 HR-MS and RP-HPLC analysis of biotin-6-ahx-DTyr(tBu)-Tic-Ser(tBu)-COOH.

Peptide was synthesized according to the strategy presented in the main protocol (Block A, steps 100-124), and used without further purification. The purity of the peptide was confirmed using analytical HPLC (UV detector, C8 column, 220nm). The molecular mass of the peptide was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Supplementary Figure 4 HR-MS and RP-HPLC analysis of Boc-Asp(Bzl)-AOMK.

AOMK warhead was synthesized according to the strategy presented in the main protocol (Block B, steps 125-137), and purified via extraction. The purity of the product warhead was confirmed using analytical HPLC (UV detector, C8 column, 220nm). The molecular mass of the compound was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module.

Supplementary Figure 5 HR-MS and RP-HPLC analysis of biotin-labeled legumain activity containing unnatural amino acids.

Probe was synthesized according to the strategy presented in the main protocol (Block C, steps 138-151), and purified using reverse phase high performance (pressure) liquid chromatography (RP-HPLC) Waters system with semi-preparative C8 column. The purity of the probe was confirmed using analytical HPLC with C8 column (UV detector, 220nm). The molecular mass of the substrate was confirmed using High Resolution Mass Spectrometer WATERS LCT premier XE with Electrospray Ionization (ESI) and Time of Flight (TOF) module. Since the probe is more hydrophobic than the substrate, we used C8 (instead of C18) column to purify and analyze.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1. (PDF 2303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poreba, M., Salvesen, G. & Drag, M. Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat Protoc 12, 2189–2214 (2017). https://doi.org/10.1038/nprot.2017.091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing