Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Base-resolution stratification of cancer mutations using functional variomics

Abstract

A complete understanding of human cancer variants requires new methods to systematically and efficiently assess the functional effects of genomic mutations at a large scale. Here, we describe a set of tools to rapidly clone and stratify thousands of cancer mutations at base resolution. This protocol provides a massively parallel pipeline to achieve high stringency and throughput. The approach includes high-throughput generation of mutant clones by Gateway, confirmation of variant identity by barcoding and next-generation sequencing, and stratification of cancer variants by multiplexed interaction profiling. Compared with alternative site-directed mutagenesis methods, our protocol requires less sequencing effort and enables robust statistical calling of allele-specific effects. To ensure the precision of variant interaction profiling, we further describe two complementary methods—a high-throughput enhanced yeast two-hybrid (HT-eY2H) assay and a mammalian-cell-based Gaussia princeps luciferase protein-fragment complementation assay (GPCA). These independent assays with standard controls validate mutational interaction profiles with high quality. This protocol provides experimentally derived guidelines for classifying candidate cancer alleles emerging from whole-genome or whole-exome sequencing projects as 'drivers' or 'passengers'. For 100 genomic mutations, the protocol—including target primer design, variant library construction, and sequence verification—can be completed within as little as 2–3 weeks, and cancer variant stratification can be completed within 2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional variomics pipeline to characterize cancer mutations.
Figure 2: High-throughput construction of a cancer mutation library.
Figure 3: Confirmation of mutation entry clones by barcoded next-generation sequencing.
Figure 4: Characterization of cancer mutations by HT-eY2H assay.
Figure 5: Characterization of cancer mutations by GPCA.

Similar content being viewed by others

References

  1. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  2. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  3. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  4. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  Google Scholar 

  5. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  Google Scholar 

  6. Gartner, J.J. et al. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc. Natl. Acad. Sci. USA 110, 13481–13486 (2013).

    Article  CAS  Google Scholar 

  7. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  Google Scholar 

  8. Sahni, N. et al. Edgotype: a fundamental link between genotype and phenotype. Curr. Opin. Genet. Dev. 23, 649–657 (2013).

    Article  CAS  Google Scholar 

  9. Garraway, L.A. & Lander, E.S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    CAS  PubMed  Google Scholar 

  10. Vidal, M., Cusick, M.E. & Barabasi, A.L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  Google Scholar 

  11. Firnberg, E. & Ostermeier, M. PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One 7, e52031 (2012).

    Article  CAS  Google Scholar 

  12. Fowler, D.M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    Article  CAS  Google Scholar 

  13. Fowler, D.M., Stephany, J.J. & Fields, S. Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat. Protoc. 9, 2267–2284 (2014).

    Article  CAS  Google Scholar 

  14. Wei, X. et al. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genet. 10, e1004819 (2014).

    Article  Google Scholar 

  15. Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).

    Article  CAS  Google Scholar 

  16. Burrell, R.A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  Google Scholar 

  17. Wang, Z., Jensen, M.A. & Zenklusen, J.C. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol. Biol. 1418, 111–141 (2016).

    Article  Google Scholar 

  18. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  Google Scholar 

  19. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  20. Weinberg, R.A. Coming full circle-from endless complexity to simplicity and back again. Cell 157, 267–271 (2014).

    Article  CAS  Google Scholar 

  21. MacArthur, D.G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  CAS  Google Scholar 

  22. Stratton, M.R., Campbell, P.J. & Futreal, P.A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  Google Scholar 

  23. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  24. del Sol, A., Balling, R., Hood, L. & Galas, D. Diseases as network perturbations. Curr. Opin. Biotechnol. 21, 566–571 (2010).

    Article  CAS  Google Scholar 

  25. Ryan, C.J. et al. High-resolution network biology: connecting sequence with function. Nat. Rev. Genet. 14, 865–879 (2013).

    Article  CAS  Google Scholar 

  26. Li, Y., Sahni, N. & Yi, S. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Oncotarget 7, 78841–78849 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Kim, E. et al. Systematic functional interrogation of rare cancer variants identifies oncogenic alleles. Cancer Discov. 6, 714–726 (2016).

    Article  CAS  Google Scholar 

  28. Cheung, L.W. et al. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 26, 479–494 (2014).

    Article  CAS  Google Scholar 

  29. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  30. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  31. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  32. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  33. Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    Article  CAS  Google Scholar 

  34. Platt, R.J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  Google Scholar 

  35. Wang, X. et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30, 159–164 (2012).

    Article  CAS  Google Scholar 

  36. Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

    Article  Google Scholar 

  37. Chakravarti, A., Clark, A.G. & Mootha, V.K. Distilling pathophysiology from complex disease genetics. Cell 155, 21–26 (2013).

    Article  CAS  Google Scholar 

  38. Lin, S., Yin, Y.A., Jiang, X., Sahni, N. & Yi, S. Multi-OMICs and genome editing perspectives on liver cancer signaling networks. Biomed Res. Int. 2016, 6186281 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Fuxman Bass, J.I. et al. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 161, 661–673 (2015).

    Article  CAS  Google Scholar 

  40. Barrera, L.A. et al. Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science 351, 1450–1454 (2016).

    Article  CAS  Google Scholar 

  41. Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987–1001 (2012).

    Article  CAS  Google Scholar 

  42. Hartley, J.L., Temple, G.F. & Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795 (2000).

    Article  CAS  Google Scholar 

  43. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

    Article  CAS  Google Scholar 

  44. Yachie, N. et al. Pooled-matrix protein interaction screens using barcode fusion genetics. Mol. Syst. Biol. 12, 863 (2016).

    Article  Google Scholar 

  45. Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 1212–1226 (2014).

    Article  CAS  Google Scholar 

  46. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  47. Dreze, M. et al. 'Edgetic' perturbation of a Caenorhabiditis elegans BCL-2 ortholog. Nat. Methods 6, 843–849 (2009).

    Article  CAS  Google Scholar 

  48. Rual, J.F. et al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14, 2128–2135 (2004).

    Article  CAS  Google Scholar 

  49. Boxem, M. et al. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534–545 (2008).

    Article  CAS  Google Scholar 

  50. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  51. Dreze, M. et al. High-quality binary interactome mapping. Methods Enzymol. 470, 281–315 (2010).

    Article  CAS  Google Scholar 

  52. Yu, H. et al. Next-generation sequencing to generate interactome datasets. Nat. Methods 8, 478–480 (2011).

    Article  CAS  Google Scholar 

  53. Walhout, A.J. & Vidal, M. A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res. 9, 1128–1134 (1999).

    Article  CAS  Google Scholar 

  54. Cassonnet, P. et al. Benchmarking a luciferase complementation assay for detecting protein complexes. Nat. Methods 8, 990–992 (2011).

    Article  CAS  Google Scholar 

  55. Remy, I. & Michnick, S.W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat. Methods 3, 977–979 (2006).

    Article  CAS  Google Scholar 

  56. O'Halloran, D.M. PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection. Sci. Rep. 6, 20631 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the following research funds: Cancer Prevention and Research Institute of Texas (CPRIT) grant RR160021 (N.S.); a University of Texas Systems Rising STARs award (N.S.); NIH/NCI award no. P30CA016672 (N.S.); and the University Center Foundation via the Institutional Research Grant program (to N.S.) at the University of Texas MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

S.Y., N.-N.L., L.H., and N.S. performed the experiments. S.Y., N.-N.L., H.W., and N.S. analyzed the data. S.Y. and N.S. wrote the manuscript.

Corresponding authors

Correspondence to Song Yi or Nidhi Sahni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Liu, NN., Hu, L. et al. Base-resolution stratification of cancer mutations using functional variomics. Nat Protoc 12, 2323–2341 (2017). https://doi.org/10.1038/nprot.2017.086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.086

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer