Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals

Abstract

This protocol is an extension to: Nat. Protoc. 5, 503–515 (2010); doi: 10.1038/nprot.2009.235; published online 25 February 2010

The FLOTAC is a sensitive, accurate, and precise technique for the diagnosis of protozoan and helminth infections in humans and animals. However, it requires centrifugation, and hence might be out of reach in resource-constrained settings. As an extension of the original FLOTAC protocol, this protocol describes the Mini-FLOTAC technique, a logical evolution of FLOTAC conceived to perform multivalent, qualitative, and quantitative diagnosis of helminth and protozoan infections in human and animal feces, and urine. This has been found to be of most use in the processing of large numbers of samples with rapid laboratory workup, and for veterinary applications directly on-farm. In addition to the Mini-FLOTAC apparatus, we describe the use of the Fill-FLOTAC, a closed system used to facilitate the performance of the first four consecutive steps of the Mini-FLOTAC technique: fecal sample collection and weighing, homogenization, filtration, and filling of the Mini-FLOTAC chambers. Processing of an individual sample using this protocol requires 12 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mini-FLOTAC components.
Figure 2
Figure 3: Fill-FLOTAC 2 and Fill-FLOTAC 5.
Figure 4: The Mini-FLOTAC apparatus being analyzed under a microscope.
Figure 5

Similar content being viewed by others

References

  1. Pedrique, B. et al. The drug and vaccine landscape for neglected diseases (2010-2011): a systematic assessment. Lancet Glob. Health 1, e371–e379 (2013).

    Article  Google Scholar 

  2. Moran, M. et al. Neglected disease research and development: how much are we really spending? PLoS Med. 6, e1000030 (2009).

    Article  Google Scholar 

  3. Bergquist, R., Johansen, M.V. & Utzinger, J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol. 25, 151–156 (2009).

    Article  Google Scholar 

  4. Cringoli, G., Rinaldi, L., Maurelli, M.P. & Utzinger, J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat. Protoc. 5, 503–515 (2010).

    Article  CAS  Google Scholar 

  5. Utzinger, J., Becker, S.L., van Lieshout, L., van Dam, G.J. & Knopp, S. New diagnostic tools in schistosomiasis. Clin. Microbiol. Infect. 21, 529–542 (2015).

    Article  CAS  Google Scholar 

  6. Knopp, S. et al. A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans. R. Soc. Trop. Med. Hyg. 103, 347–354 (2009).

    Article  Google Scholar 

  7. El-Abdellati, A. et al. The use of a simplified faecal egg count reduction test for assessing anthelmintic efficacy on Belgian and German cattle farms. Vet. Parasitol. 169, 352–357 (2010).

    Article  CAS  Google Scholar 

  8. Becker, S.L. et al. Comparison of the Flotac-400 dual technique and the formalin-ether concentration technique for diagnosis of human intestinal protozoon infection. J. Clin. Microbiol. 49, 2183–2190 (2011).

    Article  Google Scholar 

  9. Levecke, B. et al. Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter? Parasitol. Res. 109, 953–957 (2011).

    Article  Google Scholar 

  10. Albonico, M. et al. Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Trans. R. Soc. Trop. Med. Hyg. 107, 493–501 (2013).

    Article  CAS  Google Scholar 

  11. Bogoch, I.I., Raso, G., N'Goran, E.K., Marti, H.P. & Utzinger, J. Differences in microscopic diagnosis of helminths and intestinal protozoa among diagnostic centres. Eur. J. Clin. Microbiol. Infect. Dis. 25, 344–347 (2006).

    Article  CAS  Google Scholar 

  12. Levecke, B. et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl. Trop. Dis. 5, e1201 (2011).

    Article  Google Scholar 

  13. Becker, S.L. et al. Experiences and lessons from a multi-country NIDIAG study on persistent digestive disorders in the tropics. PLoS Negl. Trop.Dis 10, e0004818 (2016).

    Article  Google Scholar 

  14. Fisheries and Food Reference Book: Manual of Veterinary Parasitological Laboratory Techniques, Vol. 418, Ministry of Agriculture, Fisheries and Food, HMSO, London (1986).

  15. Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev. Inst. Med. Trop. São Paulo 14, 397–400 (1972).

    CAS  PubMed  Google Scholar 

  16. Yap, P. et al. Determining soil-transmitted helminth infection status and physical fitness of school-aged children. J. Vis. Exp. 66, e3966 (2012).

    Google Scholar 

  17. Allen, A.V.H. & Ridley, D.S. Further observations on the formol-ether concentration technique for faecal parasites. J. Clin. Pathol. 23, 545–546 (1970).

    Article  CAS  Google Scholar 

  18. Utzinger, J. et al. Microscopic diagnosis of sodium acetate-acetic acid-formalin-fixed stool samples for helminths and intestinal protozoa: a comparison among European reference laboratories. Clin. Microbiol. Infect. 16, 267–273 (2010).

    Article  CAS  Google Scholar 

  19. Cringoli, G. Coprological diagnosis: what's new? Parassitologia 46, 137–139 (2004).

    CAS  PubMed  Google Scholar 

  20. Cringoli, G., Rinaldi, L., Albonico, M., Bergquist, R. & Utzinger, J. Geospatial (s)tools: integration of advanced epidemiological sampling and novel diagnostics. Geospat. Health 7, 399–404 (2013).

    Article  Google Scholar 

  21. Borrelli, L. et al. New diagnostic insights for Macrorhabdus ornithogaster infection. J. Clin. Microbiol. 3, 3448–3350 (2015).

    Article  Google Scholar 

  22. Barda, B. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis. 7, e2344 (2013).

    Article  Google Scholar 

  23. Barda, B. et al. Parasitic infections on the shore of Lake Victoria (East Africa) detected by Mini-FLOTAC and standard techniques. Acta Trop. 137, 140–146 (2014).

    Article  Google Scholar 

  24. Kenyon, F. et al. Pooling sheep faecal samples for the assessment of gastrointestinal strongyle and Nematodirus infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol. 225, 53–60 (2016).

    Article  CAS  Google Scholar 

  25. King, J.D. et al. Intestinal parasite prevalence in an area of Ethiopia after implementing the SAFE strategy, enhanced outreach services, and health extension program. PLoS Negl. Trop. Dis. 7, e2223 (2013).

    Article  Google Scholar 

  26. Maurelli, M.P. et al. FLOTAC and Mini-FLOTAC for uro-microscopic diagnosis of Capillaria plica (syn. Pearsonema plica) in dogs. BMC Res. Notes 7, 591 (2014).

    Article  Google Scholar 

  27. Kochanowski, M., Karamon, J., Dąbrowska, J. & Cencek, T. Experimental estimation of the efficacy of the FLOTAC basic technique. J. Parasitol. 100, 633–639 (2014).

    Article  Google Scholar 

  28. Ruzicova, M., Petrzelkova, K., Kalousova, B., Modry, D. & Pomajbìkovà, K. Validation of FLOTAC for the detection and quantification of Troglodytella abrassarti and Neobalantidium coli in chimpanzees and pigs. J. Parasitol. 100, 662–670 (2014).

    Article  CAS  Google Scholar 

  29. Noel, M.L., Scare, J.A., Bellaw, J.L. & Nielsen, M.K. Accuracy and precision of Mini-FLOTAC and McMaster techniques for determining equine strongyle egg counts. J. Equin. Vet. Sci. 48, 182–187e1 (2017).

    Article  Google Scholar 

  30. Bosco, A. et al. Mini-FLOTAC, an accurate method for the diagnosis of nematode infections in horses and sheep. Proceedings of the XXIX Congress of the Italian Society of Parasitology (SOIPA) Bari, Italy, June 21–24, p. 32 (2016).

  31. Van den Putte, N., Claerebout, E. & Levecke, B. Evaluation of the Mini-FLOTAC technique for detection of gastro-intestinal parasites in large companion animals. Vlams Diergeneskd. Tijdschr. 85, 15–22 (2016).

    Google Scholar 

  32. Maurelli, M.P. et al. Mini-FLOTAC, a new tool for copromicroscopic diagnosis of common intestinal nematodes in dogs. Parasit. Vectors 7, 356 (2014).

    Article  Google Scholar 

  33. Torgerson, P.R., Paul, M. & Lewis, F.I. The contribution of simple random sampling to observed variations in faecal egg counts. Vet. Parasitol. 188, 397–401 (2012).

    Article  Google Scholar 

  34. Engels, D., Nahimana, S., de Vlas, S.J. & Gryseels, B. Variation in weight of stool samples prepared by the Kato-Katz method and its implications. Trop. Med. Int. Health. 2, 265–271 (1997).

    Article  CAS  Google Scholar 

  35. Krauth, S.J. et al. An in-depth analysis of a piece of shit: distribution of Schistosoma mansoni and hookworm eggs in human stool. PLoS Negl. Trop. Dis. 6, e1969 (2012).

    Article  Google Scholar 

  36. Levecke, B. et al. Mathematical inference on helminth egg counts in stool and its applications in mass drug administration programmes to control soil-transmitted helminthiasis in public health. Adv. Parasitol. 87, 193–247 (2015).

    Article  Google Scholar 

  37. Rinaldi, L. et al. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol. 205, 216–223 (2014).

    Article  CAS  Google Scholar 

  38. Mekonnen, Z. et al. Comparison of individual and pooled stool samples for the assessment of soil-transmitted helminth infection intensity and drug efficacy. PLoS Negl. Trop. Dis. 7, e2189 (2013).

    Article  CAS  Google Scholar 

  39. Kure, A. et al. Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique. Parasit. Vectors 8, 489 (2015).

    Article  Google Scholar 

  40. Degarege, A. et al. Comparison of individual and pooled urine samples for estimating the presence and intensity of Schistosoma haematobium infections at the population level. Parasit. Vectors 8, 593 (2015).

    Article  Google Scholar 

  41. Lo, N.C. et al. Evaluation of a urine pooling strategy for the rapid and cost-efficient prevalence classification of schistosomiasis. PLoS Negl. Trop. Dis. 10, e0004894 (2016).

    Article  Google Scholar 

  42. Barda, B. et al. How long can stool samples be fixed for an accurate diagnosis of soil-transmitted helminth infection using Mini-FLOTAC? PLoS Negl. Trop. Dis. 9, e0003698 (2015).

    Article  Google Scholar 

  43. Rinaldi, L., Coles, G.C., Maurelli, M.P., Musella,, V. & Cringoli, G. Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for parasite egg counts in sheep. Vet. Parasitol. 177, 345–352 (2011).

    Article  CAS  Google Scholar 

  44. Barda, B. et al. Mini-FLOTAC and Kato-Katz: helminth eggs watching on the shore of Lake Victoria. Parasit. Vectors 6, 220 (2013).

    Article  Google Scholar 

  45. Barda, B. et al. “Freezing” parasites in pre-Himalayan region, Himachal Pradesh: experience with Mini-FLOTAC. Acta Trop. 130, 11–16 (2013).

    Article  Google Scholar 

  46. Barda, B. et al. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit. Vectors 7, 271 (2014).

    Article  Google Scholar 

  47. Lima, V.F. et al. A comparison of Mini-FLOTAC and FLOTAC with classic methods to diagnosing intestinal parasites of dogs from Brazil. Parasitol. Res. 114, 3529–3533 (2015).

    Article  Google Scholar 

  48. Djokic, V. et al. Mini-FLOTAC for counting Toxoplasma gondii oocysts from cat faeces-comparison with cell counting plates. Exp. Parasitol. 14, 67–71 (2014).

    Article  Google Scholar 

  49. Silva, L.M.R. et al. Mini-FLOTAC for the diagnosis of Eimeria infection in goats: an alternative to McMaster. Small Rum. Res. 114, 280–283 (2013).

    Article  Google Scholar 

  50. Godber, O.F. et al. A comparison of the FECPAK and Mini-FLOTAC faecal egg counting techniques. Vet. Parasitol. 207, 342–345 (2015).

    Article  Google Scholar 

  51. Assefa, L.M. et al. Diagnostic accuracy and cost-effectiveness of alternative methods for detection of soil-transmitted helminths in a post-treatment setting in western Kenya. PLoS Negl. Trop. Dis. 8, e2843 (2014).

    Article  Google Scholar 

  52. Nikolay, B., Brooker, S.J. & Pullan, R.L. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int. J. Parasitol. 44, 765–774 (2014).

    Article  Google Scholar 

  53. Smith, J.L. et al. Factors associated with the performance and cost-effectiveness of using lymphatic filariasis transmission assessment surveys for monitoring soil-transmitted helminths: a case study in Kenya. Am. J. Trop. Med. Hyg. 92, 342–353 (2015).

    Article  Google Scholar 

  54. Benjamin-Chung, J. et al. The interaction of deworming, improved sanitation, and household flooring with soil-transmitted helminth infection in rural Bangladesh. PLoS Negl. Trop. Dis. 9, e0004256 (2015).

    Article  Google Scholar 

  55. Malrait, K. et al. Novel insights into the pathogenic importance, diagnosis and treatment of the rumen fluke (Calicophoron daubneyi) in cattle. Vet. Parasitol. 207, 134–139 (2015).

    Article  Google Scholar 

  56. Donoghue, E.M., Lyons, E.T., Bellaw, J.L. & Nielsen, M.K. Biphasic appearance of corticated and decorticated ascarid egg shedding in untreated horse foals. Vet. Parasitol. 214, 114–117 (2015).

    Article  CAS  Google Scholar 

  57. Lamberton, P.H. & Jourdan, P.M. Human ascariasis: diagnostics update. Curr. Trop. Med. Rep. 2, 189–200 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

G.C. acknowledges G. and M. Federico for their technical expertise and their enthusiasm in participating in the development of the Mini-FLOTAC and Fill-FLOTAC apparatuses. G.C. also acknowledges M.E. Morgoglione, M. Santaniello, P. Pepe, D. Ianniello, S. Pennacchio, A. Amadesi, L. Del Prete, R. Vascone, E. Noviello, V. Musella, and M. Parrilla for their participation in the application and validation of the Mini-FLOTAC technique.

Author information

Authors and Affiliations

Authors

Contributions

G.C. invented the Mini-FLOTAC and the Fill-FLOTAC devices and developed the Mini-FLOTAC technique; M.P.M., B.L., A.B., J.V., J.U., and L.R. participated in the application and validation of the technique in the medical and veterinary fields. All authors read, revised, and approved the final submitted paper.

Corresponding author

Correspondence to Laura Rinaldi.

Ethics declarations

Competing interests

The Mini-FLOTAC and Fill-FLOTAC devices have been developed by and are patented by G. Cringoli, but the patent will be handed over to the University of Naples ‘Federico II’. At present, the Mini-FLOTAC technique is being further validated by different research groups focusing on human and veterinary parasitology. The fact that one of the authors is the current patent holder of the Mini-FLOTAC technique had no role in the preparation and submission of the protocols reported or the design and implementation of ongoing and future studies. To obtain Mini-FLOTAC or Fill-FLOTAC devices, a contribution is required that is used only to (i) cover costs of production and packaging, and (ii) contribute to the ongoing FLOTAC research. The remaining authors have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cringoli, G., Maurelli, M., Levecke, B. et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc 12, 1723–1732 (2017). https://doi.org/10.1038/nprot.2017.067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.067

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing