Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells

Abstract

Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3-diaminobenzidine (DAB) and hydrogen peroxide (H2O2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of targeted EM using APEX2 and its variants in cultured cells.
Figure 2: Bright-field and electron microscopy (EM) images of cultured cells stained by APEX2 and its variants.
Figure 3: Correlated light and electron microscopy using APEX2 and its variants.
Figure 4: Illustration of proper ultrastructure preservation and staining from APEX2 and its variants.

Similar content being viewed by others

References

  1. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  Google Scholar 

  2. Fernandez-Suarez, M. & Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    Article  CAS  Google Scholar 

  3. Xu, K., Shim, S.-H. & Zhuang, X. in Far-Field Optical Nanoscopy (eds. Tinnefeld, P., Eggeling, C. & Hell, S. W.) 27–64 (Springer, 2015).

  4. Eggeling, C. & Hell, S.W. in Far-Field Optical Nanoscopy (eds. Tinnefeld, P., Eggeling, C. & Hell, S. W.) 3–25 (Springer, 2015).

  5. De Mey, J., Moeremans, M., Geuens, G., Nuydens, R. & De Brabander, M. High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol. Int. Rep. 5, 889–899 (1981).

    Article  CAS  Google Scholar 

  6. Giepmans, B.N.G., Deerinck, T.J., Smarr, B.L., Jones, Y.Z. & Ellisman, M.H. Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods 2, 743–749 (2005).

    Article  CAS  Google Scholar 

  7. Henderson, D. & Weber, K. Three-dimensional organization of microfilaments and microtubules in the cytoskeleton. Immunoperoxidase labelling and stereo-electron microscopy of detergent-extracted cells. Exp. Cell Res. 124, 301–316 (1979).

    Article  CAS  Google Scholar 

  8. Deerinck, T.J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).

    Article  CAS  Google Scholar 

  9. Schnell, U., Dijk, F., Sjollema, K.A. & Giepmans, B.N.G. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9, 152–158 (2012).

    Article  CAS  Google Scholar 

  10. Tokuyasu, K.T. Application of cryoultramicrotomy to immunocytochemistry. J. Microsc. 143, 139–149 (1986).

    Article  CAS  Google Scholar 

  11. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111 (2011).

    Article  CAS  Google Scholar 

  12. Martell, J.D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    Article  CAS  Google Scholar 

  13. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  CAS  Google Scholar 

  14. Ariotti, N. et al. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev. Cell 35, 513–525 (2015).

    Article  CAS  Google Scholar 

  15. Lam, S.S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  Google Scholar 

  16. Shvets, E., Bitsikas, V., Howard, G., Hansen, C.G. & Nichols, B.J. Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat. Commun. 6, 6867 (2015).

    Article  CAS  Google Scholar 

  17. Ludwig, A., Nichols, B.J. & Sandin, S. Architecture of the caveolar coat complex. J. Cell Sci. 129, 3077 (2016).

    Article  CAS  Google Scholar 

  18. Liu, L.-K., Choudhary, V., Toulmay, A. & Prinz, W.A. An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147 (2016).

    Article  Google Scholar 

  19. Hyenne, V. et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 211, 27–37 (2015).

    Article  CAS  Google Scholar 

  20. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).

    Article  CAS  Google Scholar 

  21. Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  Google Scholar 

  22. Bertolin, G. et al. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ. 22, 1563–1576 (2015).

    Article  CAS  Google Scholar 

  23. Fueller, J. et al. Subcellular partitioning of protein tyrosine phosphatase 1B to the endoplasmic reticulum and mitochondria depends sensitively on the composition of its tail anchor. PLoS One 10, e0139429 (2015).

    Article  Google Scholar 

  24. Lu, Y.-W. et al. Defining functional classes of Barth syndrome mutation in humans. Hum. Mol. Genet. 25, 1754–1770 (2016).

    Article  CAS  Google Scholar 

  25. Luo, X. et al. Enhanced transcriptional activity and mitochondrial localization of STAT3 co-induce axon regrowth in the adult central nervous system. Cell Rep. 15, 398–410 (2016).

    Article  CAS  Google Scholar 

  26. Long, J.C.D. & Fodor, E. The PB2 subunit of the influenza A virus RNA polymerase is imported into the mitochondrial matrix. J. Virol. 90, 8729–8738 (2016).

    Article  CAS  Google Scholar 

  27. Ludwig, A., Nichols, B.J. & Sandin, S. Architecture of the caveolar coat complex. J. Cell Sci. 29, 3077–3083 (2016).

    Article  Google Scholar 

  28. Bohm, U.L. et al. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits. Nat. Commun. 7, 10866 (2016).

    Article  CAS  Google Scholar 

  29. Kotewicz, K.M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21, 169–181 (2017).

    Article  CAS  Google Scholar 

  30. Ellisman, M.H. et al. Advances in molecular probe-based labeling tools and their application to multiscale multimodal correlated microscopies. J. Chem. Biol. 8, 143–151 (2015).

    Article  Google Scholar 

  31. Wong, M. & Munro, S. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, (2014).

  32. Martell, J.D. et al. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).

    Article  CAS  Google Scholar 

  33. Salo, V.T. et al. Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J. 35, 2699–2716 (2016).

    Article  CAS  Google Scholar 

  34. Belevich, I., Joensuu, M., Kumar, D., Vihinen, H. & Jokitalo, E. Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol. 14, e1002340 (2016).

    Article  Google Scholar 

  35. Bushong, E.A. et al. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens. Microsc. Microanal. 21, 231–238 (2015).

    Article  CAS  Google Scholar 

  36. Heusermann, W. et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J. Cell Biol. 213, 173–184 (2016).

    Article  CAS  Google Scholar 

  37. Su, Y. et al. Mitochondrial transplantation attenuates airway hyperresponsiveness by inhibition of cholinergic hyperactivity. Theranostics 6, 1244–1260 (2016).

    Article  CAS  Google Scholar 

  38. Lawrence, A.D. et al. Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synth. Biol. 3, 454–465 (2014).

    Article  CAS  Google Scholar 

  39. Zumthor, J.P. et al. Static clathrin assemblies at the peripheral vacuole—plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog. 12, e1005756 (2016).

    Article  Google Scholar 

  40. Lin, T.-Y. et al. Mapping chromatic pathways in the Drosophila visual system. J. Comp. Neurol. 524, 213–227 (2016).

    Article  CAS  Google Scholar 

  41. Joesch, M. et al. Reconstruction of genetically identified neurons imaged by serial-section electron microscopy. eLife 5, e15015 (2016).

    Article  Google Scholar 

  42. Eyre, N.S. et al. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation. Virology 491, 27–44 (2016).

    Article  CAS  Google Scholar 

  43. Marceau, C.D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article  CAS  Google Scholar 

  44. Kittelmann, M., Hawes, C. & Hughes, L. Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems. J. Microsc. 263, 200–211 (2016).

    Article  CAS  Google Scholar 

  45. Jing, J. et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nat. Cell Biol. 17, 1339–1347 (2015).

    Article  CAS  Google Scholar 

  46. Chen, C.-L. et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc. Natl. Acad. Sci. USA 112, 12093–12098 (2015).

    Article  CAS  Google Scholar 

  47. Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    Article  CAS  Google Scholar 

  48. Dwyer, D.J. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 111, E2100–E2109 (2014).

    Article  CAS  Google Scholar 

  49. Choi, H., Yang, Z. & Weisshaar, J.C. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15. Proc. Natl. Acad. Sci. 112, E303–E310 (2015).

    Article  CAS  Google Scholar 

  50. Lee, J. et al. An enhanced ascorbate peroxidase 2/antibody-binding domain fusion protein (APEX2-ABD) as a recombinant target-specific signal amplifier. Chem. Commun. 51, 10945–10948 (2015).

    Article  CAS  Google Scholar 

  51. Lee, S.-Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep. 15, 1837–1847 (2016).

    Article  CAS  Google Scholar 

  52. Li, J., Wang, Y., Chiu, S.-L. & Cline, H.T. Membrane targeted horseradishperoxidase as a marker for correlative fluorescence and electron microscopy studies. Front. Neural Circuits 4, 6 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Loh, K.H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    Article  CAS  Google Scholar 

  54. Kuipers, J. et al. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles. Cell Tissue Res. 360, 61–70 (2015).

    Article  CAS  Google Scholar 

  55. Puig, A. & Gilbert, H.F. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem. 269, 7764–7771 (1994).

    CAS  PubMed  Google Scholar 

  56. Wilson, C.J. & Groves, P.M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J. Comp. Neurol. 194, 599–615 (1980).

    Article  CAS  Google Scholar 

  57. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  Google Scholar 

  58. Hoffmann, C. et al. Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat. Protoc. 5, 1666–1677 (2010).

    Article  CAS  Google Scholar 

  59. Jiménez-Banzo, A., Nonell, S., Hofkens, J. & Flors, C. Singlet oxygen photosensitization by EGFP and its chromophore HBDI. Biophys. J. 94, 168–172 (2008).

    Article  Google Scholar 

  60. Mercogliano, C.P. & DeRosier, D.J. Concatenated metallothionein as a clonable gold label for electron microscopy. J. Struct. Biol. 160, 70–82 (2007).

    Article  CAS  Google Scholar 

  61. Diestra, E., Fontana, J., Guichard, P., Marco, S. & Risco, C. Visualization of proteins in intact cells with a clonable tag for electron microscopy. J. Struct. Biol. 165, 157–168 (2009).

    Article  CAS  Google Scholar 

  62. Sharp, K.H., Mewies, M., Moody, P.C.E. & Raven, E.L. Crystal structure of the ascorbate peroxidase-ascorbate complex. Nat. Struct. Mol. Biol. 10, 303–307 (2003).

    Article  CAS  Google Scholar 

  63. Patterson, W.R. & Poulos, T.L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34, 4331–4341 (1995).

    Article  CAS  Google Scholar 

  64. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine Teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    Article  CAS  Google Scholar 

  65. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  Google Scholar 

  66. McIntosh, J.R. Cellular Electron Microscopy 79 (Academic Press, 2011).

  67. Bozzola, J.J. & Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists (Jones & Bartlett Learning, 1999).

Download references

Acknowledgements

Funding was provided by the US National Institutes of Health (R01-CA186568 to A.Y.T.; P41 GM103412 and R01GM086197 to M.H.E.) and a Howard Hughes Medical Institute Collaborative Initiative Award (to A.Y.T.). J.D.M. and S.S.L. were supported by National Science Foundation Graduate Research and National Defense Science and Engineering fellowships.

Author information

Authors and Affiliations

Authors

Contributions

J.D.M. and A.Y.T. developed the original APEX tag for electron microscopy. S.S.L. and A.Y.T. developed APEX2. T.J.D. and M.H.E. developed protocols for cell staining, EM sample processing, and imaging by light and electron microscopy. J.D.M. prepared all constructs and cell samples for the figures, and T.J.D. performed all EM sample processing and imaging. J.D.M. wrote the paper. All authors edited the paper.

Corresponding authors

Correspondence to Mark H Ellisman or Alice Y Ting.

Ethics declarations

Competing interests

The Massachusetts Institute of Technology has submitted a patent application related to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martell, J., Deerinck, T., Lam, S. et al. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 12, 1792–1816 (2017). https://doi.org/10.1038/nprot.2017.065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.065

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing