Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Use of luciferase probes to measure ATP in living cells and animals

Abstract

ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic rendition of pmeLUC, plasma membrane localization and pathways for ATP release.
Figure 2: Schematics of the in vitro protocol.
Figure 3: Schematics of the in vivo protocol.
Figure 4: ATP kinetics in mitochondrial and cytosolic compartments.
Figure 5: Calculation of basal ATP content and mitochondrial ATP production.
Figure 6: The luminometer.
Figure 7: OXPHOS contribution in ATP synthesis.
Figure 8: The in vivo imaging system.

Similar content being viewed by others

References

  1. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87, 659–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Burnstock, G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev. 58, 58–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lazarowski, E.R. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8, 359–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Virgilio, F. & Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. DeLuca, M. & McElroy, W.D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry 13, 921–925 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Ignowski, J.M. & Schaffer, D.V. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol. Bioeng. 86, 827–834 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Jouaville, L.S., Pinton, P., Bastianutto, C., Rutter, G.A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 96, 13807–13812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porcelli, A.M. et al. Targeting of reporter molecules to mitochondria to measure calcium, ATP, and pH. Methods Cell. Biol. 65, 353–380 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Torrano, V. et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat. Cell. Biol. 18, 645–656 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patergnani, S. et al. Methods to monitor and compare mitochondrial and glycolytic ATP production. Methods Enzymol. 542, 313–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Gould, S.G., Keller, G.A. & Subramani, S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell. Biol. 105, 2923–2931 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Manfredi, G., Yang, L., Gajewski, C.D. & Mattiazzi, M. Measurements of ATP in mammalian cells. Methods 26, 317–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Michels, A.A., Nguyen, V.T., Konings, A.W., Kampinga, H.H. & Bensaude, O. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment. Eur. J. Biochem. 234, 382–389 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Wright, R.H. et al. ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352, 1221–1225 http://dx.doi.org/10.1126/science.aad93 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Pellegatti, P., Falzoni, S., Pinton, P., Rizzuto, R. & Di Virgilio, F. A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol. Biol. Cell 16, 3659–3665 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beigi, R., Kobatake, E., Aizawa, M. & Dubyak, G.R. Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am. J. Physiol. 276, C267–C278 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Pellegatti, P. et al. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3, e2599 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber, F.C. et al. Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. J. Exp. Med. 207, 2609–2619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilhelm, K. et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat. Med. 16, 1434–1438 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, D.S. & Horowitz, S.B. Intracellular compartmentalization of adenosine triphosphate. J. Biol. Chem. 261, 13911–13915 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Boyer, P.D. The ATP synthase--a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Bianchi, G. et al. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis. 5, e1135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loo, J.M. et al. Extracellular metabolic energetics can promote cancer progression. Cell 160, 393–406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White, E.H., Rapaport, E.E., Seliger, H.H. & Hopkins., T.A. The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states. Bioorg. Chem. 1, 92–122 (1971).

    Article  CAS  Google Scholar 

  28. Harwood, K.R., Mofford, D.M., Reddy, G.R. & Miller, S.C. Identification of mutant firefly luciferases that efficiently utilize aminoluciferins. Chem. Biol. 18, 1649–1657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Evans, M.S. et al. A synthetic luciferin improves bioluminescence imaging in live mice. Nat. Methods 11, 393–395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shinde, R., Perkins, J. & Contag, C.H. Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry 45, 11103–11112 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Luker, K.E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl. Acad. Sci. USA 101, 12288–12293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNabb, D.S., Reed, R. & Marciniak, R.A. Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae. Eukaryot. Cell. 4, 1539–1549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Day, J.C., Tisi, L.C. & Bailey, M.J. Evolution of beetle bioluminescence: the origin of beetle luciferin. Luminescence 19, 8–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Helenius, M., Jalkanen, S. & Yegutkin, G. Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim. Biophys. Acta 1823, 1967–1975 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro, A.B., Hajec, L. & Gao, N. High-throughput, homogeneous, fluorescence intensity-based measurement of adenosine diphosphate and other ribonucleoside diphosphates with nanomolar sensitivity. Anal. Biochem. 415, 190–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ando, T. et al. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog. 8, e1002561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. USA 106, 15651–15656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kotera, I., Iwasaki, T., Imamura, H., Noji, H. & Nagai, T. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem. Biol. 5, 215–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nakano, M., Imamura, H., Nagai, T. & Noji, H. Ca(2)(+) regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem. Biol. 6, 709–715 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Liemburg-Apers, D.C. et al. Quantitative glucose and ATP sensing in mammalian cells. Pharm. Res. 28, 2745–2757 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Berg, J., Hung, Y.P. & Yellen, G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tantama, M., Martinez-Francois, J.R., Mongeon, R. & Yellen, G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Tantama, M. & Yellen, G. Imaging changes in the cytosolic ATP-to-ADP ratio. Methods Enzymol. 547, 355–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Llaudet, E., Hatz, S., Droniou, M. & Dale, N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal. Chem. 77, 3267–3273 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Corriden, R., Insel, P.A. & Junger, W.G. A novel method using fluorescence microscopy for real-time assessment of ATP release from individual cells. Am. J. Physiol. Cell Physiol. 293, C1420–C1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Schneider, S.W. et al. Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 12180–12185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayashi, S., Hazama, A., Dutta, A.K., Sabirov, R.Z. & Okada, Y. Detecting ATP release by a biosensor method. Sci. STKE 2004, pl14 (2004).

    PubMed  Google Scholar 

  49. Inoue, Y. et al. Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging. Eur. J. Nucl. Med. Mol. Imaging 36, 771–779 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hong, S. & Pedersen, P.L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol. Mol. Biol. Rev. 72, 590–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonora, M. et al. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat. Protoc. 8, 2105–2118 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zhuo, H. et al. Tumor imaging and interferon-γ-inducible protein-10 gene transfer using a highly efficient transferrin-conjugated liposome system in mice. Clin. Cancer Res. 19, 4206–4217 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Cool, S.K., Breyne, K., Meyer, E., De Smedt, S.C. & Sanders, N.N. Comparison of in vivo optical systems for bioluminescence and fluorescence imaging. J. Fluoresc. 23, 909–920 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Sambrook, J. & Russell, D.W. Calcium-phosphate-mediated transfection of eukaryotic cells with plasmid DNAs. CSH Protoc. 2006 http://dx.doi.org/10.1101/pdb.prot3871 (2006).

  55. Robb-Gaspers, L.D. et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17, 4987–5000 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lazarowski, E.R., Boucher, R.C. & Harden, T.K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 64, 785–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Suadicani, S.O., Brosnan, C.F. & Scemes, E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J. Neurosci. 26, 1378–1385 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spray, D.C., Ye, Z.C. & Ransom, B.R. Functional connexin 'hemichannels': a critical appraisal. Glia 54, 758–773 (2006).

    Article  PubMed  Google Scholar 

  59. Zhang, Z. et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol. 9, 945–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Di Virgilio, F., Pinton, P. & Falzoni, S. Assessing extracellular ATP as danger signal in vivo: the pmeLuc system. Methods Mol. Biol. 1417, 115–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Ozalp, V.C., Nielsen, L.J. & Olsen, L.F. An aptamer-based nanobiosensor for real-time measurements of ATP dynamics. Chembiochem 11, 2538–2541 (2010).

    Article  PubMed  CAS  Google Scholar 

  62. Bhatt, D.P., Chen, X., Geiger, J.D. & Rosenberger, T.A. A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 889–890, 110–115 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lee, D.H., Kim, S.Y. & Hong, J.I. A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed. Engl. 43, 4777–4780 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Gajewski, C.D., Yang, L., Schon, E.A. & Manfredi, G. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters. Mol. Biol. Cell 14, 3628–3635 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jager, L. et al. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat. Protoc. 4, 547–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Clark, P.R. et al. Polycations and cationic lipids enhance adenovirus transduction and transgene expression in tumor cells. Cancer Gene Ther. 6, 437–446 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.P. is grateful to C. degli Scrovegni for continuous support. P.P. is supported by the Italian Ministry of Education, University and Research (COFIN no. 20129JLHSY_002, FIRB no. RBAP11FXBC_002 and Futuro in Ricerca no. RBFR10EGVP_001), the Italian Cystic Fibrosis Research Foundation (no. 19/2014) and the Telethon Foundation (no. GGP15219/B). P.P. and C.G. are supported by local funds from the University of Ferrara and the Italian Ministry of Health, as well as by the Italian Association for Cancer Research (AIRC nos. IG-18624 and MFAG-13521). F.D.V. is supported by grants from the Italian Association for Cancer Research (no. IG 2016 Id.18581), the Ministry of Health of Italy (no. RF-2011–02348435) and EU-COST Action (no. BM 1406). L.R. is funded by 'Cinque per mille dell'IRPEF–Finanziamento della ricerca sanitaria'.

Author information

Authors and Affiliations

Authors

Contributions

G.M., A.C.S., S. Marchi, S. Missiroli, S.F., L.R., V.P., C.G., F.D.V. and P.P. contributed extensively to the writing of this paper. G.M. and A.C.S. performed the experiments, analyzed the data and generated the figures.

Corresponding authors

Correspondence to Francesco Di Virgilio or Paolo Pinton.

Ethics declarations

Competing interests

F.D.V. serves as a member of the Scientific Advisory Board of Biosceptre International, a UK-based R&D company developing therapeutic applications of P2X7-receptor-targeting Abs.

Supplementary information

Supplementary Data

Supplementary Data. Nucleotide sequences of luciferases. (PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morciano, G., Sarti, A., Marchi, S. et al. Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12, 1542–1562 (2017). https://doi.org/10.1038/nprot.2017.052

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing