Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Total chemical synthesis of histones and their analogs, assisted by native chemical ligation and palladium complexes

Abstract

Chemical synthesis of histones allows precise control of the installation of post-translational modifications via the coupling of derivatized amino acids. Shortcomings of other approaches for obtaining modified histones for epigenetic studies include heterogeneity of the obtained product and difficulties in incorporating multiple modifications on the same histone. In this protocol, unprotected peptide fragments are prepared by Fmoc solid-phase synthesis and coupled in aqueous buffers via native chemical ligation (NCL; in NCL, a peptide bond is formed between a peptide with an N-terminal Cys and another peptide having a C-terminal thioester). This task is challenging, with obstacles relating to the preparation and ligation of hydrophobic peptides, as well as the requirement for multiple purification steps due to protecting-group manipulations during the polypeptide assembly process. To address this, our approach uses an easily removable solubilizing tag for the synthesis and ligation of hydrophobic peptides, as well as a more efficient and better-yielding method to remove Cys-protecting groups that uses palladium chemistry (specifically [Pd(allyl)Cl]2 and PdCl2 complexes). The utility of this approach is demonstrated in the syntheses of ubiquitinated H2B at Lys34, phosphorylated H2A at Tyr57 and unmodified H4. Each of these analogs can be prepared in milligram quantities within 20–30 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General schematic illustration for Pd-mediated Cys-protecting groups and solubilizing tag removal.
Figure 2: Preparation of H2BK34Ub.
Figure 3: Preparation of H2AY57p.
Figure 4: Preparation of H4.
Figure 5: Analytical HPLC–MS of the purified synthetic H2BK34Ub with observed mass 23,348.2 ± 1.9 Da; calcd. 23,351.8 Da).
Figure 6: Characterization of H2AY57p.
Figure 7: Characterization of H4.

Similar content being viewed by others

References

  1. Harmand, T.J., Murar, C.E. & Bode, J.W. Protein chemical synthesis by α-ketoacid–hydroxylamine ligation. Nat. Protoc. 11, 1130–1147 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dawson, P.E., Muir, T.W., Clark-Lewis, I. & Kent, S.B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Kornberg, R.D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Bannister, A.J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Maze, I., Noh, K.M., Soshnev, A.A. & Allis, C.D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holt, M. & Muir, T. Application of the protein semisynthesis strategy to the generation of modified chromatin. Annu. Rev. Biochem. 84, 265–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, L. & Chin, J.W. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell. Biol. 13, 168–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Spicer, C.D. & Davis, B.G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Muller, M.M. & Muir, T.W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Maity, S.K., Jbara, M. & Brik, A. Chemical and semisynthesis of modified histones. J. Pept. Sci. 22, 252–259 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, J.-S., Tang, S., Qi, Y.-K., Wang, Z.-P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Siman, P., Karthikeyan, S.V., Nikolov, M., Fischle, W. & Brik, A. Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew. Chem. Int. Ed. Engl. 52, 8059–8063 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Seenaiah, M., Jbara, M., Mali, S.M. & Brik, A. Convergent versus sequential protein synthesis: the case of ubiquitinated and glycosylated H2B. Angew. Chem. Int. Ed. Engl. 54, 12374–12378 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Pentelute, B.L. & Kent, S.B. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org. Lett. 9, 687–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. David, Y., Vila-Perello, M., Verma, S. & Muir, T.W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 7, 394–402 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson, E.C. et al. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease. J. Am. Chem. Soc. 129, 11480–11490 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Fang, G.M., Wang, J.X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. Engl. 51, 10347–10350 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Li, J., Li, Y., He, Q., Li, H. & Liu, L. One-pot native chemical ligation of peptide hydrazides enables total synthesis of modified histones. Org. Biomol. Chem. 12, 5435–5441 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Jbara, M., Maity, S.K., Seenaiah, M. & Brik, A. Palladium mediated rapid deprotection of N-terminal cysteine under native chemical ligation conditions for the efficient preparation of synthetically challenging proteins. J. Am. Chem. Soc. 138, 5069–5075 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Jbara, M., Laps, S., Maity, S.K. & Brik, A. Palladium-assisted cleavage of peptides and proteins containing a backbone with thiazolidine linkage. Chem. Eur. J. 22, 14851–14855 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Maity, S.K., Jbara, M., Laps, S. & Brik, A. Efficient palladium-assisted one-pot deprotection of (acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew. Chem. Int. Ed. Engl. 55, 8108–8112 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Lechner, C.C., Agashe, N.D. & Fierz, B. Traceless synthesis of asymmetrically modified bivalent nucleosomes. Angew. Chem. Int. Ed. Engl. 55, 2903–2906 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y.Y., Ficht, S., Brik, A. & Wong, C.H. Sugar-assisted ligation in glycoprotein synthesis. J. Am. Chem. Soc. 129, 7690–7701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maity, S.K. et al. Palladium-assisted removal of a solubilizing tag from a Cys side chain to facilitate peptide and protein synthesis. Org. Lett. 18, 3026–3029 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Jbara, M., Maity, S.K., Morgan, M., Wolberger, C. & Brik, A. Chemical synthesis of phosphorylated histone H2A at Tyr57 reveals insight into the inhibition mode of the SAGA deubiquitinating module. Angew. Chem. Int. Ed. 55, 4972–4976 (2016).

    Article  CAS  Google Scholar 

  29. Wu, L., Zee, B.M., Wang, Y., Garcia, B.A. & Dou, Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol. Cell. 43, 132–144 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Blanco-Canosa, J.B. & Dawson, P.E. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. Engl. 47, 6851–6855 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Erlich, L.A., Kumar, K.S., Haj-Yahya, M., Dawson, P.E. & Brik, A. N-methylcysteine-mediated total chemical synthesis of ubiquitin thioester. Org. Biomol. Chem. 8, 2392–2396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, K.S.A., Haj-Yahya, M., Olschewski, D., Lashuel, H.A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. Engl. 48, 8090–8094 (2009).

    Article  CAS  Google Scholar 

  33. Moyal, T., Hemantha, H.P., Siman, P., Refua, M. & Brik, A. Highly efficient one-pot ligation and desulfurization. Chem. Sci. 4, 2496–2501 (2013).

    Article  CAS  Google Scholar 

  34. Basnet, H. et al. Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature 516, 267–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morgan, M.T. et al. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zuo, C., Tang, S. & Zheng, J.S. Chemical synthesis and biophysical applications of membrane proteins. J. Pept. Sci. 21, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Rusiecki, V.K. & Warne, S.A. Synthesis of N-alpha-Fmoc-N-epsilon-Nvoc-lysine and use in the preparation of selectively functionalized peptides. Bioorg. Med. Chem. Lett. 3, 707–710 (1993).

    Article  CAS  Google Scholar 

  38. Haj-Yahya, M., Kumar, K.S.A., Erlich, L.A. & Brik, A. Protecting group variations of delta-mercaptolysine useful in chemical ubiquitylation. Biopolymers 94, 504–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Carpino, L.A. et al. The uronium/guanidinium peptide coupling reagents: finally the true uronium salts. Angew. Chem. Int. Ed. Engl. 41, 442–445 (2002).

    Article  Google Scholar 

  40. Siman, P. et al. Chemical synthesis and expression of the HIV-1 rev protein. Chembiochem 12, 1097–1104 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, A.B., Savinov, S.N., Manjappara, U.V. & Chaiken, I.M. Peptide-small molecule hybrids via orthogonal deprotection-chemoselective conjugation to cysteine-anchored scaffolds. A model study. Org. Lett. 4, 4041–4044 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Freidinger, R.M., Hinkle, J.S., Perlow, D.S. & Arison, B.H. Synthesis of 9-fluorenylmethyloxycarbonyl-protected N-alkyl amino-acids by reduction of oxazolidinones. J. Org. Chem. 48, 77–81 (1983).

    Article  CAS  Google Scholar 

  43. Royo, M., Alsina, J., Giralt, E., Slomcyznska, U. & Albericio, F. S-phenylacetamidomethyl (Phacm) - an orthogonal cysteine protecting group for Boc and Fmoc solid-phase peptide-synthesis strategies. J. Chem. Soc. 1, 1095–1102 (1995).

    Google Scholar 

Download references

Acknowledgements

A.B. is a Neubauer Professor and a Taub Fellow supported by the Taub Foundation. S.K.M. thanks Israel's Council of Higher Education for a fellowship under the PBC program. M.J. thanks the Israel Council of Higher Education for a fellowship under his PhD program.

Author information

Authors and Affiliations

Authors

Contributions

S.K.M., M.J., G.M. and G.K. performed the experiments, compound characterization and data analysis. All the authors discussed the experimental design and contributed to writing the manuscript.

Corresponding author

Correspondence to Ashraf Brik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–30. (PDF 3038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S., Jbara, M., Mann, G. et al. Total chemical synthesis of histones and their analogs, assisted by native chemical ligation and palladium complexes. Nat Protoc 12, 2293–2322 (2017). https://doi.org/10.1038/nprot.2017.049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.049

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing