Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting

Abstract

Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable–oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes 3–8 d, depending on the type of substrate and template used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of boronate affinity controllable–oriented surface imprinting.
Figure 2: Equipment for the preparation of a glycoprotein-imprinted monolithic capillary.
Figure 3: Overview of the synthesis procedure for AMNPs.
Figure 4: Equipment setup for the synthesis of glycan-imprinted MNPs.
Figure 5: Equipment setup for the imprinting of monosaccharides.

Similar content being viewed by others

References

  1. McGarry, R.C., Helfand, S.L., Quarles, R.H. & Roder, J.C. Recognition of myelin-associated glycoprotein by the monoclonal-antibody NHK-1. Nature 306, 376–378 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA 109, E3268–E3277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fuchs, A. et al. Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin. Cell Host Microbe 8, 186–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakata, E., Koshi, Y., Koga, E., Katayama, Y. & Hamachi, I. Double-modification of lectin using two distinct chemistries for fluorescent ratiometric sensing and imaging saccharides in test tube or in cell. J. Am. Chem. Soc. 127, 13253–13261 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wulff, G. & Sarhan, A. Use of polymers with enzyme-analogous structures for resolution of racemates. Angew. Chem. Int. Ed. Engl. 11, 341–345 (1972).

    CAS  Google Scholar 

  6. Glad, M., Norrlöw, O., Sellergren, B., Siegbahn, N. & Mosbach, K. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J. Chromatogr. A 347, 11–23 (1985).

    Article  CAS  Google Scholar 

  7. Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem. Int. Ed. 34, 1812–1832 (1995).

    Article  CAS  Google Scholar 

  8. Piletsky, S.A. et al. A biomimetic receptor system for sialic acid based on molecular imprinting. Anal. Lett. 29, 157–170 (1996).

    Article  CAS  Google Scholar 

  9. Shi, H.Q., Tsai, W.B., Garrison, M.D., Ferrari, S. & Ratner, B.D. Template-imprinted nanostructured surfaces for protein recognition. Nature 398, 593–597 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Kugimiya, A., Yoneyama, H. & Takeuchi, T. Sialic acid imprinted polymer-coated quartz crystal microbalance. Electroanalysis 12, 1322–1326 (2000).

    Article  CAS  Google Scholar 

  11. Liu, J.Q. & Wulff, G. Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J. Am. Chem. Soc. 126, 7452–7453 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hoshino, Y. et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J. Am. Chem. Soc. 132, 6644–6645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen, X.T., Zhou, T.C. & Ye, L. Molecular imprinting of protein in Pickering emulsion. Chem. Commun. 48, 8198–8200 (2012).

    Article  CAS  Google Scholar 

  14. Ma, Y., Pan, G.Q., Zhang, Y., Guo, X.Z. & Zhang, H.Q. Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angew. Chem. Int. Ed. 52, 1511–1514 (2013).

    Article  CAS  Google Scholar 

  15. Liu, J.X. et al. Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum. Sci. Rep. 4, 5487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunath, S. et al. Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv. Healthc. Mater. 4, 1322–1326 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kugimiya, A. & Takeuchi, T. Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid. Biosens. Bioelectron. 16, 1059–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Fuchs, Y., Soppera, O., Mayes, A.G. & Haupt, K. Holographic molecularly imprinted polymers for label-free chemical sensing. Adv. Mater. 25, 566–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Suriyanarayanan, S., Nawaz, H., Ndizeye, N. & Nicholls, I.A. Hierarchical thin film architectures for enhanced sensor performance: liquid crystal-mediated electrochemical synthesis of nanostructured imprinted polymer films for the selective recognition of bupivacaine. Biosensors 4, 90–110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hart, B.R., Rush, D.J. & Shea, K.J. Discrimination between enantiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymers. J. Am. Chem. Soc. 122, 460–465 (2000).

    Article  CAS  Google Scholar 

  21. Nematollahzadeh, A. et al. High-capacity hierarchically imprinted polymer beads for protein recognition and capture. Angew. Chem. Int. Ed. 50, 495–498 (2011).

    Article  CAS  Google Scholar 

  22. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102, 1–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Wulff, G. & Liu, J.Q. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc. Chem. Res. 45, 239–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ye, L. & Mosbach, K. Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept. J. Am. Chem. Soc. 123, 2901–2902 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Urraca, J.L. et al. Polymeric complements to the Alzheimer's disease biomarker β-amyloid isoforms Aβ1-40 and Aβ1-42 for blood serum analysis under denaturing conditions. J. Am. Chem. Soc. 133, 9220–9223 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. James, T.D., Sandanayake, K.R.A.S. & Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. 35, 1910–1922 (1996).

    Article  Google Scholar 

  27. Nishiyabu, R., Kubo, Y., James, T.D. & Fossey, J.S. Boronic acid building blocks: tools for sensing and separation. Chem. Commun. 47, 1106–1123 (2011).

    Article  CAS  Google Scholar 

  28. Liu, J.X. et al. An efficient approach to prepare boronate core-shell polymer nanoparticles for glycoprotein recognition via combined distillation precipitation polymerization and RAFT media precipitation polymerization. Chem. Commun. 51, 3896–3898 (2015).

    Article  CAS  Google Scholar 

  29. Li, D.J., Chen, Y. & Liu, Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem. Soc. Rev. 44, 8097–8123 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Li, D.J. & Liu, Z. in Boron: Sensing, Synthesis and Supramolecular Self-Assembly 1st edn. (eds. Li, M., Fossey, J.S. & James, T.D.) 11.1–11.8 (Royal Society of Chemistry Press, 2015).

  31. Muhammad, P., Li, D.J. & Liu, Z. in Encyclopedia of Analytical Chemistry 1st edn. (ed. Meyers, R.A.) 1–18 (John Wiley & Sons, 2015).

  32. Pal, A., Bérubé, M. & Hall, D.G. Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: identification of a receptor for the tumor marker TF-antigen disaccharide. Angew. Chem. Int. Ed. 49, 1492–1495 (2010).

    Article  CAS  Google Scholar 

  33. Bi, X.D., Li, D.J. & Liu, Z. Pattern recognition of monosaccharides via a virtual lectin array constructed by boronate affinity-based pH-featured encoding. Anal. Chem. 87, 4442–4447 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wulff, G., Grobe-Einsler, R., Vesper, W. & Sarhan, A. Enzyme-analogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers. Makromol. Chem. 178, 2817–2825 (1977).

    Article  CAS  Google Scholar 

  35. Wulff, G. Selective binding to polymers via covalent bonds-the construction of chiral cavities as specific receptor-sites. Pure Appl. Chem. 54, 2093–2102 (1982).

    Article  Google Scholar 

  36. Wulff, G. Molecular imprinting. Ann. N.Y. Acad. Sci. 434, 327–333 (1984).

    Article  CAS  Google Scholar 

  37. Wulff, G. & Kirstein, G. Measuring the optical-activity of chiral imprints in insoluble highly cross-linked polymers. Angew. Chem. Int. Ed. Engl. 29, 684–686 (1990).

    Article  Google Scholar 

  38. Wulff, G. & Schauhoff, S. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J. Org. Chem. 56, 395–400 (1991).

    Article  CAS  Google Scholar 

  39. Vlatakis, G., Andersson, L.I., Müller, R. & Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 361, 645–647 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Mosbach, K. Molecular imprinting. Trends Biochem. Sci. 19, 9–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Mayes, A.G., Andersson, L.I. & Mosbach, K. Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting. Anal. Biochem. 222, 483–488 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Kempe, M. & Mosbach, K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J. Chromatogr. A 664, 276–279 (1994).

    Article  CAS  Google Scholar 

  43. Yu, C. & Mosbach, K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J. Org. Chem. 62, 4057–4064 (1997).

    Article  CAS  Google Scholar 

  44. Manju, S., Hari, P.R. & Sreenivasan, K. Fluorescent molecularly imprinted polymer film binds glucose with a concomitant changes in fluorescence. Biosens. Bioelectron. 26, 894–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y.X. et al. Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. J. Mater. Chem. B 1, 1044–1051 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, W. et al. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew. Chem. Int. Ed. 53, 12489–12493 (2014).

    CAS  Google Scholar 

  47. Lin, Z.A. et al. Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment. J. Mater. Chem. B 2, 637–643 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Shinde, S. et al. Sialic-acid-imprinted fluorescent core-shell particles for selective labeling of cell surface glycans. J. Am. Chem. Soc. 137, 13908–13912 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Stephenson-Brown, A., Acton, A.L., Preece, J.A., Fossey, J.S. & Mendes, P.M. Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chem. Sci. 6, 5114–5119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, H. et al. Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays. Chem. Commun. 52, 3296–3299 (2016).

    Article  CAS  Google Scholar 

  51. Li, L., Lu, Y., Bie, Z.J., Chen, H.Y. & Liu, Z. Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew. Chem. Int. Ed. 52, 7451–7454 (2013).

    Article  CAS  Google Scholar 

  52. Ye, J., Chen, Y. & Liu, Z. A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angew. Chem. Int. Ed. 53, 10386–10389 (2014).

    Article  CAS  Google Scholar 

  53. Wang, S.S., Ye, J., Bie, Z.J. & Liu, Z. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chem. Sci. 5, 1135–1140 (2014).

    Article  CAS  Google Scholar 

  54. Bi, X.D. & Liu, Z. Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Anal. Chem. 86, 959–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Bi, X.D. & Liu, Z. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate. Anal. Chem. 86, 12382–12389 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bie, Z.J., Chen, Y., Ye, J., Wang, S.S. & Liu, Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew. Chem. Int. Ed. 54, 10211–10215 (2015).

    Article  CAS  Google Scholar 

  57. Yin, D.Y. et al. Surface-enhanced raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem. Commun. 51, 17696–17699 (2015).

    Article  CAS  Google Scholar 

  58. Wang, S.S. et al. Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci. Rep. 6, 22757 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, J., Yin, D.Y., Wang, S.S., Chen, H.Y. & Liu, Z. Probing low-copy-number proteins in a single living cell. Angew. Chem. 128, 13409–13412 (2016).

    Article  Google Scholar 

  60. Mayes, A.G. & Mosbach, K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 68, 3769–3774 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Schweitz, L., Andersson, L.I. & Nilsson, S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Anal. Chem. 69, 1179–1183 (1997).

    Article  CAS  Google Scholar 

  62. Matsui, J., Fujiwara, K. & Takeuchi, T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Anal. Chem. 72, 1810–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. An, Z. et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 14493–14499 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Tan, C.J. & Tong, Y.W. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media. Anal. Chem. 79, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Funaya, N. & Haginaka, J. Matrine- and oxymatrine-imprinted monodisperse polymers prepared by precipitation polymerization and their applications for the selective extraction of matrine-type alkaloids from Sophora flavescens Aiton. J. Chromatogr. A 1248, 18–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Bossi, A., Piletsky, S.A., Piletska, E.V., Righetti, P.G. & Turner, A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 73, 5281–5286 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Qin, L., He, X.W., Zhang, W., Li, W.Y. & Zhang, Y.K. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. J. Chromatogr. A 1216, 807–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Yilmaz, E., Haupt, K. & Mosbach, K. The use of immobilized templates - a new approach in molecular imprinting. Angew. Chem. Int. Ed. 39, 2115–2118 (2000).

    Article  CAS  Google Scholar 

  69. Yang, H.H., Zhang, S.Q., Tan, F., Zhuang, Z.X. & Wang, X.R. Surface molecularly imprinted nanowires for biorecognition. J. Am. Chem. Soc. 127, 1378–1379 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Canfarotta, F., Poma, A., Guerreiro, A. & Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 11, 443–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Poma, A. et al. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–“plastic antibodies”. Adv. Funct. Mater. 23, 2821–2827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sallacan, N., Zayats, M., Bourenko, T., Kharitonov, A.B. & Willner, I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem. 74, 702–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Ben-Amram, Y., Riskin, M. & Willner, I. Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst 135, 2952–2959 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, D.H., Takahara, N., Lee, S.W. & Kunitake, T. Fabrication of glucose-sensitive TiO2 ultrathin films by molecular imprinting and selective detection of monosaccharides. Sens. Actuators B Chem. 130, 379–385 (2008).

    Article  CAS  Google Scholar 

  75. Okutucu, B. & Önal, S. Molecularly imprinted polymers for separation of various sugars from human urine. Talanta 87, 74–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Shen, F. & Ren, X.Q. Covalent molecular imprinting made easy: a case study of mannose imprinted polymer. RSC Adv. 4, 13123–13125 (2014).

    Article  CAS  Google Scholar 

  77. Sinñeriz, F. et al. Toward an alternative for specific recognition of sulfated sugars. Preparation of highly specific molecular imprinted polymers. Tetrahedron 63, 1857–1862 (2007).

    Article  CAS  Google Scholar 

  78. Li, H.Y., Wang, H.Y., Liu, Y.C. & Liu, Z. A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem. Commun. 48, 4115–4117 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of a grant for Distinguished Young Scholars (no. 21425520) and a general grant (no. 21275073) from the National Natural Science Foundation of China, as well as a Key Grant of 973 Program (no. 2013CB911202) from the Ministry of Science and Technology of China to Z.L.

Author information

Authors and Affiliations

Authors

Contributions

S.W., Z.B. and Z.L. developed the protocols. R.X., S.W., H.H. and Z.L. wrote the paper. All authors have discussed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhen Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table

Supplementary Tables 1 and 2. (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, R., Wang, S., Bie, Z. et al. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting. Nat Protoc 12, 964–987 (2017). https://doi.org/10.1038/nprot.2017.015

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.015

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing