Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein

Abstract

The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes 7 d and the basic bioinformatic pipeline takes 1 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of high-throughput methods for studying in vivo RNA structures.
Figure 2: Schematic overview of the hiCLIP procedure.
Figure 3: Comparison of data generated using this protocol with the original pipeline.
Figure 4: Example genome browser view.
Figure 5: Quality control of hiCLIP by autoradiography.
Figure 6: Adaptor preparation (adenylation and purification).
Figure 7: PCR cycle number optimization for cDNA library amplification.

Similar content being viewed by others

Accession codes

Accessions

European Nucleotide Archive

GenBank/EMBL/DDBJ

References

  1. Wan, Y., Kertesz, M., Spitale, R.C., Segal, E. & Chang, H.Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).

    CAS  PubMed  Google Scholar 

  2. Lu, Z. & Chang, H.Y. Decoding the RNA structurome. Curr. Opin. Struct. Biol. 36, 142–148 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tian, B., Bevilacqua, P.C., Diegelman-Parente, A. & Mathews, M.B. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 5, 1013–1023 (2004).

    CAS  PubMed  Google Scholar 

  4. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  Google Scholar 

  5. Gong, C. & Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    CAS  PubMed  Google Scholar 

  7. Gong, C., Tang, Y. & Maquat, L.E. mRNA-mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 20, 1214–1220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aw, J.G. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    CAS  PubMed  Google Scholar 

  10. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma, E., Sterne-Weiler, T., O'Hanlon, D. & Blencowe, B.J. Global mapping of human RNA-RNA interactions. Mol. Cell 62, 618–626 (2016).

    CAS  PubMed  Google Scholar 

  12. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  13. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J.S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    CAS  PubMed  Google Scholar 

  14. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    CAS  PubMed  Google Scholar 

  15. Spitale, R.C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flynn, R.A. et al. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc. 11, 273–290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwok, C.K., Ding, Y., Tang, Y., Assmann, S.M. & Bevilacqua, P.C. Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun. 4, 2971 (2013).

    PubMed  Google Scholar 

  18. Weeks, K.M. & Mauger, D.M. Exploring RNA structural codes with SHAPE chemistry. Acc. Chem. Res. 44, 1280–1291 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuker, M. & Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kudla, G., Granneman, S., Hahn, D., Beggs, J.D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA 108, 10010–10015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Helwak, A. & Tollervey, D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat. Protoc. 9, 711–728 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Calvet, J.P. & Pederson, T. Heterogeneous nuclear RNA double-stranded regions probed in living HeLa cells by crosslinking with the psoralen derivative aminomethyltrioxsalen. Proc. Natl. Acad. Sci. USA 76, 755–759 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cimino, G.D., Gamper, H.B., Isaacs, S.T. & Hearst, J.E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu. Rev. Biochem. 54, 1151–1193 (1985).

    CAS  PubMed  Google Scholar 

  25. Kaufmann, G., Klein, T. & Littauer, U.Z. T4 RNA ligase: substrate chain length requirements. FEBS Lett. 46, 271–275 (1974).

    CAS  PubMed  Google Scholar 

  26. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  PubMed  Google Scholar 

  27. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. Moore, M.J. et al. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc. 9, 263–293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Nostrand, E.L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zarnegar, B.J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Grosswendt, S. et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Moore, M.J. et al. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6, 8864 (2015).

    CAS  PubMed  Google Scholar 

  35. Huppertz, I. et al. iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65, 274–287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  38. Harlow, E. & Lane, D. Using Antibodies : A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1999).

  39. Liu, J., Haorah, J. & Xiong, H. Western blotting technique in biomedical research. in : Current Laboratory Methods in Neuroscience Research (eds. Xiong, H. & Gendelman, H.E.) 187–200 (Springer, 2014).

    Google Scholar 

  40. Hymer, W.C. & Kuff, E.L. Isolation of nuclei from mammalian tissues through the use of Triton X-100. J. Histochem. Cytochem. 12, 359–363 (1964).

    CAS  PubMed  Google Scholar 

  41. Stockley, P.G. Filter-binding assays. Methods Mol. Biol. 543, 1–14 (2009).

    CAS  PubMed  Google Scholar 

  42. Farrell, R.E. RNA Methodologies: A Laboratory Guide for Isolation and Characterization (Academic Press, 1993).

  43. Konig, J. et al. iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp. 50, e2638 (2011).

    Google Scholar 

  44. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 1–10 (2009).

    Google Scholar 

  48. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank F. Agostini (Luscombe laboratory) for helpful advice on the 'hiclipr' package; C. Militti (Ule laboratory) for valuable comments on the manuscript; F. Lee and I. Ruiz de los Mozos (Ule laboratory) for testing the 'hiclipr' package; and all the members of the Ule and Luscombe laboratories for providing fruitful discussions throughout the study. The hiCLIP project was supported by funding from the European Research Council (617837-Translate) to J.U., a Wellcome Trust Joint Investigator Award to J.U. and N.M.L. (103760/Z/14/Z), the Nakajima Foundation Fellowship and an MRC Centenary Early Career Award to Y.S., a Wellcome Trust PhD Training Fellowship for Clinicians to A.M.C., and the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001002), the UK Medical Research Council (FC001002), and the Wellcome Trust (FC001002).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and J.U. conceived the hiCLIP protocol; Y.S. and A.M.C. wrote and described the software for data analysis; A.M.C. developed the 'hiclipr' package; Y.S., A.M.C., N.M.L., and J.U. wrote the manuscript; and J.U. and N.M.L. supervised the project.

Corresponding author

Correspondence to Jernej Ule.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, Y., Chakrabarti, A., Luscombe, N. et al. Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein. Nat Protoc 12, 611–637 (2017). https://doi.org/10.1038/nprot.2016.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing