Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Merging allylic C–H bond activation and C–C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems


This protocol describes a diastereoselective approach for the synthesis of complex molecular architectures containing two stereogenic centers in a 1,4 relationship, one of which being an all-carbon quaternary stereogenic center. Such molecules could be intermediates in the synthesis of steroids, for example. Conceived as a single-flask synthetic sequence from ω-ene cyclopropanes, the protocol involves a concerted allylic C–H and C–C bond activation promoted by the Negishi reagent (Cp2Zr(η2-butene)). This zirconium-promenade-based procedure affords bifunctionalized products in high diastereomeric ratios after reaction of ω-ene cyclopropanes with the Negishi complex, followed by a thermal treatment and sequential addition of two different electrophiles. The method proves to be particularly efficient when carbonyl compounds are used as first electrophiles and hydrogen or elemental halides are used as second electrophiles. In addition, it offers the opportunity to create new C–C bonds via remote functionalization of a (sp3)–C–H bond, a result of a copper or copper/palladium transmetalation step that extends the scope of the process to alkyl, acyl and aromatic halide compounds as second electrophiles. The typical described protocol allows the synthesis of the highly diastereo-enriched 2-((1R*,2S*)-2-butyl-2 propylcyclopropyl)ethanol and may provide a new entry to access complex molecular segments of natural products such as steroids or C30 botryococcene. It requires a simple reaction setup and takes 18.5 h to run the reaction and 2 h for isolation and purification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The zirconium-promenade-based strategy used for the synthesis of multifunctionalized acylic molecules (4) of synthetic interest from diastereopure ω-ene cyclopropane (1).
Figure 2: Positive impact of the addition of THF and subsequent thermal treatment in the diastereoselectivity of the transformation providing 4a from 1a.
Figure 3: Scope and limitations of the process regarding electrophiles E1–X and E2–X.
Figure 4: Appearance of the (E,Z)-allyl-alkylzirconocene complex suspension in Et2O.
Figure 5: Appearance of the THF/Et2O (80:20, (vol/vol)) solution of the (E,Z)-allyl-alkylzirconocene complex.
Figure 6: Sequence relative to the change of the thermometer.
Figure 7: Change of color observed during the isomerization of the (Z)-allyl-alkylzirconocene species into its E isomer.
Figure 8: Immersion of the alkoxy-alkylzirconocene species in an NaCl/ice bath.
Figure 9: Typical column chromatography used for purification.


  1. 1

    Labinger, J.A. & Bercaw, J.E. Understanding and exploiting C-H bond activation. Nature 417, 507–514 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Godula, K. & Sames, D. C-H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Shilov, A.E. & Shul'pin, G.B. Activation of C-H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Souillart, L. & Cramer, N. Catalytic C-C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Rybtchinski, B. & Milstein, D. Metal insertion into C-C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).

    Article  Google Scholar 

  7. 7

    Wencel-Delord, J. & Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Gutekunst, W.R. & Baran, P.S. C-H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Giri, R., Shi, B.-F., Engle, K.M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 38, 3242–3272 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Ritleng, V., Sirlin, C. & Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem. Rev. 102, 1731–1769 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Wentzel, M.T., Reddy, V.J., Hyster, T.K. & Douglas, C.J. Chemoselectivity in catalytic C-C and C-H bond activation: controlling intermolecular carboacylation and hydroarylation of alkenes. Angew. Chem. Int. Ed. 48, 6121–6123 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Masarwa, A. & Marek, I. Selectivity in metal-catalyzed carbon-carbon bond cleavage of alkylidenecyclopropanes. Chem. Eur. J. 16, 9712–9721 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Jun, C.H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 33, 610–618 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Jun, C.-H., Moon, C.W. & Lee, D.Y. Chelation-assisted carbon-hydrogen and carbon-carbon bond activation by transition metal catalysts. Chem. Eur. J. 8, 2422–2428 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Tobisu, M., Kinuta, H., Kita, Y., Re´mond, E. & Chatani, N. Rhodium(I)-catalyzed borylation of nitriles through the cleavage of carbon-cyano bonds. J. Am. Chem. Soc. 134, 115–118 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Pusterla, I. & Bode, J.W. The mechanism of the α-ketoacid-hydroxylamine amide-forming ligation. Angew. Chem. Int. Ed. 51, 513–516 (2012).

    CAS  Article  Google Scholar 

  17. 17

    He, C., Gou, S., Huang, L. & Lei, A. Copper catalyzed arylation/C-C bond activation: an approach toward α-aryl ketones. J. Am. Chem. Soc. 132, 8273–8275 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Seiser, T. & Cramer, N. Rhodium-catalyzed C-C bond cleavage: construction of acyclic methyl substituted quaternary stereogenic centers. J. Am. Chem. Soc. 132, 5340–5341 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Winter, C. & Krause, N. Rhodium(I)-catalyzed enantioselective C-C bond activation. Angew. Chem. Int. Ed. 48, 2460–2462 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Bart, S.C. & Chirik, P.J. Selective, catalytic carbon-carbon bond activation and functionalization promoted by late transition metal catalysts. J. Am. Chem. Soc. 125, 886–887 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Marek, I., Masarwa, A., Delaye, P.-O. & Leibeling, M. Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed 54, 414–429 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Matsuda, T. & Yuihara, I. A rhodium(I)-catalysed formal intramolecular C-C/C-H bond metathesis. Chem. Commun. 51, 7393–7396 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Wu, J.-Q. et al. Rhodium(III)-catalyzed C-H/C-C activation sequence: vinylcyclopropanes as versatile synthons in direct C-H allylation reactions. Chem. Commun. 51, 77–80 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Masarwa, A., Weber, M. & Sarpong, R. Selective C-C and C-H bond activation/cleavage of pinene derivatives: synthesis of enantiopure cyclohexenone scaffolds and mechanistic insights. J. Am. Chem. Soc. 137, 6327–6334 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Liang, Y., Liang, Y.-F. & Jiao, N. Cu- or Fe-catalyzed C-H/C-C bond nitrogenation reactions for the direct synthesis of N-containing compounds. Org. Chem. Front. 2, 403–415 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Bhunia, S.K., Polley, A., Natarajan, R. & Jana, R. Through-space 1,4-palladium migration and 1,2-aryl shift: direct access to dibenzo[a,c]carbazoles through a triple C-H functionalization cascade. Chem. Eur. J. 21, 16786–16791 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Kou, X. et al. Copper-catalyzed aromatic C-H bond cyanation by C-CN bond cleavage of inert acetonitrile. Chem. Eur. J. 19, 16880–16886 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Sun, M., Shen, G. & Bao, W. Regioselective cleavage of unstrained C-C bond and C-H bond: palladium-copper catalyzed deacetophenonylative arylation of coumarin derivatives. Adv. Synth. Catal. 354, 3468–3474 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Matsuda, T., Suda, Y. & Takahashi, A. Double 1,4-rhodium migration cascade in rhodium-catalysed arylative ring-opening/spirocyclisation of (3-arylcyclobutylidene)acetate. Chem. Commun. 48, 2988–2990 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Zhou, W., Li, H. & Wang, L. Direct carbo-acylation reactions of 2 arylpyridines with α-diketones via Pd-catalyzed C-H activation and selective C(sp2)-C(sp2) cleavage. Org. Lett. 14, 4594–4597 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Peng, X., Zhu, Y., Ramirez, T.A., Zhao, B. & Shi, Y. New reactivity of oxaziridine: Pd(II)-catalyzed aromatic C-H ethoxycarbonylation via C-C bond cleavage. Org. Lett. 13, 5244–5247 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Wang, C., Rakshit, S. & Glorius, F. Palladium-catalyzed intermolecular decarboxylative coupling of 2-phenylbenzoic acids with alkynes via C-H and C-C bond activation. J. Am. Chem. Soc. 132, 14006–14008 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Seiser, T., Roth, O.A. & Cramer, N. Enantioselective synthesis of indanols from tert-cyclobutanols using a rhodium-catalyzed C-C/C-H activation sequence. Angew. Chem. Int. Ed. 48, 6320–6323 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Aïssa, C. & Fürstner, A. Rhodium-catalyzed C-H activation/cycloisomerization tandem. J. Am. Chem. Soc. 129, 14836–14837 (2007).

    Article  Google Scholar 

  35. 35

    Park, Y.J., Park, J.-W. & Jun, C.-H. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Acc. Chem. Res. 41, 222–234 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Chinkov, N., Majumdar, S. & Marek, I. Stereoselective preparation of dienyl zirconocene complexes via a tandem allylic C-H bond activation-elimination sequence. J. Am. Chem. Soc. 125, 13258–13264 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Chinkov, N., Levin, A. & Marek, I. Unsaturated fatty alcohol derivatives as a source of substituted allylzirconocene. Angew. Chem. Int. Ed. 45, 465–468 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Masarwa, A. et al. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation. Nature 505, 199–203 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Pulis, A.P. & Aggarwal, V.K. Synthesis of enantioenriched tertiary boronic esters from secondary allylic carbamates. Application to the synthesis of C30 botryococcene. J. Am. Chem. Soc. 134, 7570–7574 (2012).

    CAS  Article  Google Scholar 

  40. 40

    White, J.D., Reddy, G.N. & Spessard, G.O. Total synthesis of (-)-botryococcene. J. Am. Chem. Soc. 110, 1624–1626 (1988).

    CAS  Article  Google Scholar 

  41. 41

    Deng, Z.-P., Sun, L.-R., Ji, M. & Yuan, Y.-M. Steroids from Bovistella radicata (Mont.) Pat. Biochem. Syst. Ecol. 35, 700–703 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Maestro, M.A. et al. Synthesis and biological activity of the dihydrotachysterol2 metabolite 25-hydroxydihydrotachysterol2 . J. Steroid. Biochem. Molec. Biol. 43, 359–361 (1992).

    CAS  Article  Google Scholar 

  43. 43

    Chinkov, N., Levin, A. & Marek, I. A zirconium promenade - an efficient tool in organic synthesis. Synlett, 501–514 (2006).

  44. 44

    Jiao, L. & Yu, Z.-X. Vinylcyclopropane derivatives in transition-metal-catalyzed cycloadditions for the synthesis of carbocyclic compounds. J. Org. Chem. 78, 6842–6848 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Vasse, J.-L. & Szymoniak, J. Access to functionalized cyclopropylcarbinyl compounds from homoallylic ethers via zirconocene intermediates. Tetrahedron Lett. 45, 6449–6451 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Goldschmidt, Z. & Crammer, B. Vinylcyclopropane rearrangements. Chem. Soc. Rev. 17, 229–267 (1988).

    CAS  Article  Google Scholar 

  47. 47

    Harada, S., Kiyono, H., Nishio, R., Taguchi, T. & Hanzawa, Y. Complexation of vinylcyclopropanes with zirconocene-1-butene complex: application to the stereocontrolled synthesis of steroidal side chains. J. Org. Chem. 62, 3994–4001 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Dimmock, P.W. & Whitby, R.J. Zirconium-mediated ring opening of cyclopropanes. J. Chem. Soc. Chem. Commun. 2323–2324 (1994).

  49. 49

    Luker, T. & Whitby, R.J. Organozirconium methods for the efficient construction of the bicyclo[9.3.0]tetradecane dolabellane skeleton. Tetrahedron Lett. 37, 7661–7664 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Negishi, E. & Takahashi, T. Organozirconium compounds in organic synthesis. Synthesis 1–19 (1988).

  51. 51

    Luker, T. & Whitby, R.J. Elaboration of zirconacyclopentanes by sequential insertion of lithium chloroallylide and ketones or aldehydes. Tetrahedron Lett. 35, 785–788 (1994).

    CAS  Article  Google Scholar 

  52. 52

    Vasseur, A., Perrin, L., Eisenstein, O. & Marek, I. Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chem. Sci. 6, 2770–2776 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Wipf, P. & Jahn, H. Synthetic applications of organochlorozirconocene complexes. Tetrahedron 52, 12853–12910 (1996).

    CAS  Article  Google Scholar 

  54. 54

    Farhat, S., Zouev, I. & Marek, I. From vinyl sulfides, sulfoxides and sulfones to vinyl zirconocene derivatives. Tetrahedron 60, 1329–1337 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Chinkov, N., Majumdar, S. & Marek, I. Stereoselective synthesis and reactivity of dienyl zirconocene derivatives. Synthesis 2004, 2411–2417 (2004).

    Article  Google Scholar 

  56. 56

    Mei, T.-S., Patel, H.H. & Sigman, M.S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    CAS  Article  Google Scholar 

  57. 57

    Didier, D. et al. Modulable and highly diastereoselective carbometalations of cyclopropenes. Chem. Eur. J. 20, 1038–1048 (2014).

    CAS  Article  Google Scholar 

  58. 58

    Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A.B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).

    CAS  Article  Google Scholar 

  59. 59

    Charette, A.B., Juteau, H., Lebel, H. & Molinaro, C. Enantioselective cyclopropanation of allylic alcohols with dioxaborolane ligands: scope and synthetic applications. J. Am. Chem. Soc. 120, 11943–11952 (1998).

    CAS  Article  Google Scholar 

  60. 60

    Mandès, C., Renard, S., Rofoo, M., Roux, M.C. & Rousseau, G. Preparation of oxocanes by electrophilic cyclizations of unsaturated alcohols in the presence of bis(collidine)halonium(I) hexafluorophosphates. Eur. J. Org. Chem. 2003, 463–471 (2003).

    Article  Google Scholar 

  61. 61

    Mascitti, V. & Corey, E.J. Enantioselective synthesis of pentacycloanammoxic acid. J. Am. Chem. Soc. 128, 3118–3119 (2006).

    CAS  Article  Google Scholar 

  62. 62

    Kotsuki, H., Kadota, I. & Ochi, M. A novel carbon-carbon bond-forming reaction of triflates with copper(I)-catalyzed Grignard reagents. A new concise and enantiospecific synthesis of (+)-exo-brevicomin, (5R,6S)-(−)-6-acetoxy-5-hexadecanolide, and L-factor. J. Org. Chem. 55, 4417–4422 (1990).

    CAS  Article  Google Scholar 

  63. 63

    Minko, Y., Pasco, M., Lercher, L. & Marek, I. Stereodefined trisubstituted enolates as a unique entry to all-carbon quaternary stereogenic centers in acyclic systems. Nat. Protoc. 8, 749–754 (2013).

    Article  Google Scholar 

  64. 64

    Woodward, R.B. & Hoffman, R. The conservation of orbital symmetry. Angew. Chem. Int. Ed. Engl. 8, 781–853 (1969).

    CAS  Article  Google Scholar 

Download references


This research was supported by the European Research Council under the European Community's Seventh Framework Program (ERC grant agreement no. 338912). We thank Z. Nairoukh and R. Liu for their assistance and particularly for taking the pictures.

Author information




A.V. planned, conducted and analyzed the experiments. I.M. conceived and directed the project, and wrote the manuscript, with contributions from A.V. Both authors contributed to discussions.

Corresponding author

Correspondence to Ilan Marek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasseur, A., Marek, I. Merging allylic C–H bond activation and C–C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems. Nat Protoc 12, 74–87 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing