Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identification and propagation of haploid human pluripotent stem cells

Abstract

Haploid human pluripotent stem cells (PSCs) integrate haploidy and pluripotency, providing a novel system for functional genomics and developmental research in humans. We have recently derived haploid human embryonic stem cells (ESCs) by parthenogenesis and demonstrated their wide differentiation potential and applicability for genetic screening. Because haploid cells can spontaneously become diploid, their enrichment at an early passage is key for successful derivation. In this protocol, we describe two methodologies, namely metaphase spread analysis and cell sorting, for the identification of haploid human cells within parthenogenetic ESC lines. The cell sorting approach also enables the isolation of haploid cells at low percentages, as well as the maintenance of highly enriched haploid ESC lines throughout passaging. The isolation of essentially pure populations of haploid human ESCs by this protocol requires basic PSC culture expertise and can be achieved within 4–6 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of DNA content to distinguish between haploid and diploid human ESCs.
Figure 2: Schematic overview of the protocol.
Figure 3: Determination of the frequency of FACS-based enrichment rounds for maintaining a haploid human ESC line.
Figure 4: Gating of haploid cells in DNA-based FACS with Hoechst 33342 staining.

Similar content being viewed by others

References

  1. Clift, D. & Schuh, M. Restarting life: fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 14, 549–562 (2013).

    Article  CAS  Google Scholar 

  2. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    Article  CAS  Google Scholar 

  3. Gordon, D.J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    Article  CAS  Google Scholar 

  4. Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  CAS  Google Scholar 

  5. Carette, J.E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  Google Scholar 

  6. Tarkowski, A.K., Witkowska, A. & Nowicka, J. Experimental partheonogenesis in the mouse. Nature 226, 162–165 (1970).

    Article  CAS  Google Scholar 

  7. Kaufman, M.H., Robertson, E.J., Handyside, A.H. & Evans, M.J. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73, 249–261 (1983).

    CAS  PubMed  Google Scholar 

  8. Leeb, M. & Wutz, A. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131–134 (2011).

    Article  CAS  Google Scholar 

  9. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

    Article  CAS  Google Scholar 

  10. Li, X. et al. Generation and application of mouse-rat allodiploid embryonic stem cells. Cell 164, 279–292 (2016).

    Article  CAS  Google Scholar 

  11. Yang, H. et al. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res. 23, 1187–1200 (2013).

    Article  CAS  Google Scholar 

  12. Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).

    Article  CAS  Google Scholar 

  13. Li, W. et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407–11 (2012).

    Article  CAS  Google Scholar 

  14. Li, W. et al. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14, 404–414 (2014).

    Article  CAS  Google Scholar 

  15. Sagi, I. et al. Derivation and differentiation of haploid human embryonic stem cells. Nature 532, 107–111 (2016).

    Article  CAS  Google Scholar 

  16. Revazova, E.S. et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432–449 (2007).

    Article  CAS  Google Scholar 

  17. Mai, Q. et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 17, 1008–1019 (2007).

    Article  CAS  Google Scholar 

  18. Kim, K. et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1, 346–352 (2007).

    Article  CAS  Google Scholar 

  19. Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

    Article  CAS  Google Scholar 

  20. Stelzer, Y., Yanuka, O. & Benvenisty, N. Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nat. Struct. Mol. Biol. 18, 735–741 (2011).

    Article  CAS  Google Scholar 

  21. Silva, S.S., Rowntree, R.K., Mekhoubad, S. & Lee, J.T. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 4820–4825 (2008).

    Article  CAS  Google Scholar 

  22. Bruck, T. & Benvenisty, N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Res. 6, 187–193 (2011).

    Article  CAS  Google Scholar 

  23. De Los Angeles, A. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015).

    Article  CAS  Google Scholar 

  24. Wutz, A. Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission. Annu. Rev. Cell Dev. Biol. 30, 705–722 (2014).

    Article  CAS  Google Scholar 

  25. Elling, U. & Penninger, J.M. Genome wide functional genetics in haploid cells. FEBS Lett. 588, 2415–2421 (2014).

    Article  CAS  Google Scholar 

  26. Mohr, S.E., Smith, J.A., Shamu, C.E., Neumüller, R.A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15, 591–600 (2014).

    Article  CAS  Google Scholar 

  27. Shalem, O., Sanjana, N.E. & Zhang, F. High-throughput functional genomics using CRISPR- Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  Google Scholar 

  28. Forsburg, S.L. The art and design of genetic screens: yeast. Nat. Rev. Genet. 2, 659–668 (2001).

    Article  CAS  Google Scholar 

  29. Leeb, M., Dietmann, S., Paramor, M., Niwa, H. & Smith, A. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 14, 385–393 (2014).

    Article  CAS  Google Scholar 

  30. Monfort, A. et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).

    Article  CAS  Google Scholar 

  31. Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  Google Scholar 

  32. Noggle, S. et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature 478, 70–75 (2011).

    Article  CAS  Google Scholar 

  33. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  34. Egli, D. et al. Impracticality of egg donor recruitment in the absence of compensation. Cell Stem Cell 9, 293–294 (2011).

    Article  CAS  Google Scholar 

  35. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  36. Barton, S.C., Surani, M.A. & Norris, M.L. Role of paternal and maternal genomes in mouse development. Nature 311, 374–376 (1984).

    Article  CAS  Google Scholar 

  37. Chen, K.G., Mallon, B.S., McKay, R.D.G. & Robey, P.G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14, 13–26 (2014).

    Article  CAS  Google Scholar 

  38. Weissbein, U., Benvenisty, N. & Ben-David, U. Quality control: Genome maintenance in pluripotent stem cells. J. Cell Biol. 204, 153–163 (2014).

    Article  CAS  Google Scholar 

  39. Martí, M. et al. Characterization of pluripotent stem cells. Nat. Protoc. 8, 223–253 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Golan-Lev and O. Yanuka for providing technical details for the protocol, and M. Peretz, A. Yilmaz and S. Bar for critical reading of the manuscript. I.S. is supported by the Adams Fellowships Program of the Israel Academy of Sciences and Humanities, D.E. is a NYSCF – Robertson Investigator, and N.B. is the Herbert Cohn Chair in Cancer Research. This work was partially supported by The Azrieli Foundation (N.B.), by the Russell Berrie Foundation Program in Cellular Therapies of Diabetes and by the New York Stem Cell Foundation (D.E.).

Author information

Authors and Affiliations

Authors

Contributions

I.S., D.E. and N.B. developed the techniques and wrote the manuscript.

Corresponding authors

Correspondence to Dieter Egli or Nissim Benvenisty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagi, I., Egli, D. & Benvenisty, N. Identification and propagation of haploid human pluripotent stem cells. Nat Protoc 11, 2274–2286 (2016). https://doi.org/10.1038/nprot.2016.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.145

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing